摘要:
An exemplary method of processing a polycrystalline diamond element is disclosed. According to the method, a protective layer may be formed over only a selected portion of a polycrystalline diamond element. The polycrystalline diamond element may include a polycrystalline diamond table. At least a portion of the polycrystalline diamond element may be exposed to a leaching solution such that the leaching solution contacts an exposed surface region of the polycrystalline diamond table and at least a portion of the protective layer. The protective layer may be substantially impermeable to the leaching solution. An exemplary method of manufacturing a polycrystalline diamond element is also disclosed.
摘要:
An exemplary method of processing a polycrystalline diamond element is disclosed. According to the method, a protective layer may be formed over only a selected portion of a polycrystalline diamond element. The polycrystalline diamond element may include a polycrystalline diamond table. At least a portion of the polycrystalline diamond element may be exposed to a leaching solution such that the leaching solution contacts an exposed surface region of the polycrystalline diamond table and at least a portion of the protective layer. The protective layer may be substantially impermeable to the leaching solution. An exemplary method of manufacturing a polycrystalline diamond element is also disclosed.
摘要:
A method of processing a polycrystalline diamond element includes forming a protective layer over a selected portion of a polycrystalline diamond element, the polycrystalline diamond element having a polycrystalline diamond table that includes a superabrasive face, a superabrasive side surface, and a chamfer extending between the superabrasive face and the superabrasive side surface. A portion of the superabrasive side surface is covered by the protective layer and the protective layer is not formed over the chamfer. The method includes exposing at least a portion of the polycrystalline diamond element to a leaching solution. A polycrystalline diamond element has a polycrystalline diamond table that includes a leached volume extending from the superabrasive face to a portion of the chamfer proximate to the superabrasive side surface, and the leached volume does not substantially extend along the superabrasive side surface.
摘要:
A cam follower is provided. The cam follower includes a polycrystalline diamond element, including an engagement surface. The engagement surface of the polycrystalline diamond element is positioned on the cam follower for sliding engagement with an opposing engagement surface of a cam. The cam includes at least some of a diamond reactive material.
摘要:
A cam follower is provided. The cam follower includes a polycrystalline diamond element, including an engagement surface. The engagement surface of the polycrystalline diamond element is positioned on the cam follower for sliding engagement with an opposing engagement surface of a cam. The cam includes at least some of a diamond reactive material.
摘要:
A cam follower is provided. The cam follower includes a polycrystalline diamond element, including an engagement surface. The engagement surface of the polycrystalline diamond element is positioned on the cam follower for sliding engagement with an opposing engagement surface of a cam. The cam includes at least some of a diamond reactive material.
摘要:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including at least a portion having aluminum carbide disposed interstitially between bonded-together diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of bonded-together diamond grains defining a plurality of interstitial regions. The PCD table further includes aluminum carbide disposed in at least a portion of the plurality of interstitial regions.
摘要:
A superabrasive compact (e.g., a polycrystalline diamond compact) including a substrate and at least one feature for reducing the susceptibility of the substrate to liquid metal embrittlement during brazing operations is disclosed. The superabrasive compact may include a region between the substrate and a superabrasive table in which residual tensile stresses are located. The at least one feature may be disposed proximate to the region between the substrate and the superabrasive table in which residual tensile stresses are located.
摘要:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond body bonded to the substrate. The preformed polycrystalline diamond body includes a plurality of bonded diamond grains. The preformed polycrystalline diamond body further includes an infiltrant comprising at least one interstitial carbide phase. Rotary drill bits for drilling a subterranean formation including such polycrystalline diamond compacts and methods of fabricating such polycrystalline diamond compacts are also disclosed.
摘要:
Embodiments relate to rotary drill bits that employ superabrasive cutting elements including a diamond-silicon carbide composite table. In an embodiment, a rotary drill bit includes a bit body configured to engage a subterranean formation. The bit body includes a plurality of blades. The rotary drill bit further includes a plurality of superabrasive cutting elements. Each of the superabrasive cutting elements is attached to a corresponding one of the cutting blades. At least one of the superabrasive cutting elements includes a substrate and a superabrasive table bonded to the substrate. The superabrasive table comprises diamond-silicon carbide composite including a matrix comprising nanometer-sized silicon carbide grains and micrometer-sized diamond grains dispersed through the matrix.