摘要:
A highly selective, sensitive, fast detection system and method are disclosed for detecting vapors of specific compounds in air. Vapors emanating from compounds such as explosives, or stripped from surfaces using heat and suction from a hand-held sample gun, are collected on surfaces coated with gas chromatograph (GC) material which trap explosives vapors but repel nitric oxide, then are desorbed and concentrated in one or more cold spot concentrators. A high speed gas chromatograph (GC) separates the vapors, after which specific vapors are decomposed in two pyrolyzers arranged in parallel and the resulting nitric oxide is detected. A low temperature pyrolyzer with silver produces NO from nitramines or nitrite esters; a high temperature pyrolyzer decomposes all explosives vapors to permit detection of the remaining explosives. Also disclosed is a series arrangement of pyrolyzers and gas chromatographs and an NO detector to time-shift detection of certain vapors and facilitate very fast GC analyses. The use of hydrogen as a carrier gas, plus unique collectors and concentrators, high speed heaters, NO detectors, and very fast, temperature-programmable GC's enhance selectivity, sensitivity and speed of detection.
摘要:
A highly selective, sensitive, fast detection system and method are disclosed for detecting vapors of specific compounds in air. Vapors emanating from compounds such as explosives, or stripped from surfaces using heat and suction from a hand-held sample gun, are collected on surfaces coated with gas chromatograph (GC) material which trap explosives vapors but repel nitric oxide, then are desorbed and concentrated in one or more cold spot concentrators, A high speed gas chromatograph (GC) separates the vapors, after which specific vapors are decomposed in two pyrolyzers arranged in parallel and the resulting nitric oxide is detected, A low temperature pyrolyzer with silver produces NO from nitramines or nitrite esters; a high temperature pyrolyzer decomposes all explosives vapors to permit detection of the remaining explosives, Also disclosed is a series arrangement of pyrolyzers and gas chromatographs and an NO detector to time-shift detection of certain vapors and facilitate very fast GC analyses, The use of hydrogen as a carrier gas, plus unique collectors and concentrators, high speed heaters, NO detectors, and very fast, temperature-programmable GC's enhance selectivity, sensitivity and speed of detection,
摘要:
A highly selective, sensitive, fast detection system and method are disclosed for detecting vapors of specific compounds in air. Vapors emanating from compounds such as explosives, or stripped from surfaces using heat and suction from a hand-held sample gun, are collected on surfaces coated with gas chromatograph (GC) material which trap explosives vapors but repel nitric oxide, then are desorbed and concentrated in one or more cold spot concentrators. A high speed gas chromatograph (GC) separates the vapors, after which specific vapors are decomposed in two pyrolyzers arranged in parallel and the resulting nitric oxide is detected. A low temperature pyrolyzer with silver produces NO from nitramines or nitrite esters; a high temperature pyrolyzer decomposes all explosives vapors to permit detection of the remaining explosives. Also disclosed is a series arrangement of pyrolyzers and gas chromatographs and an NO detector to time-shift detection of certain vapors and facilitate very fast GC analyses. The use of hydrogen as a carrier gas, plus unique collectors and concentrators, high speed heaters, NO detectors, and very fast, temperature-programmable GC's enhance selectivity, sensitivity and speed of detection.
摘要:
A highly selective, sensitive, fast detection system and method are disclosed for detecting vapors of specific compounds in air. Vapors emanating from compounds such as explosives, or stripped from surfaces using heat and suction from a hand-held sample gun, are collected on surfaces coated with gas chromatograph (GC) material which trap explosives vapors but repel nitric oxide, then are desorbed and concentrated in one or more cold spot concentrators. A high speed gas chromatograph (GC) separates the vapors, after which specific vapors are decomposed in two pyrolyzers arranged in parallel and the resulting nitric oxide is detected. A low temperature pyrolyzer with silver produces NO from nitramines or nitrite esters; a high temperature pyrolyzer decomposes all explosives vapors to permit detection of the remaining explosives. Also disclosed is a series arrangement of pyrolyzers and gas chromatographs and an NO detector to time-shift detection of certain vapors and facilitate very fast GC analyses. The use of hydrogen as a carrier gas, plus unique collectors and concentrators, high speed heaters, NO detectors, and very fast, temperature-programmable GC's enhance selectivity, sensitivity and speed of detection.
摘要:
A highly selective, sensitive, fast detection system and method are disclosed for detecting vapors of specific compounds in air. Vapors emanating from compounds such as explosives, or stripped from surfaces using heat and suction from a hand-held sample gun, are collected on surfaces coated with gas chromatograph (GC) material which trap explosives vapors but repel nitric oxide, then are desorbed and concentrated in one or more cold spot concentrators. A high speed gas chromatograph (GC) separates the vapors, after which specific vapors are decomposed in two pyrolyzers arranged in parallel and the resulting nitric oxide is detected. A low temperature pyrolyzer with silver produces NO from nitramines or nitrite esters; a high temperature pyrolyzer decomposes all explosives vapors to permit detection of the remaining explosives. Also disclosed is a series arrangement of pyrolyzers and gas chromatographs and an NO detector to time-shift detection of certain vapors and facilitate very fast GC analyses. The use of hydrogen as a carrier gas, plus unique collectors and concentrators, high speed heaters, NO detectors, and very fast, temperature-programmable GC's enhance selectivity, sensitivity and speed of detection.
摘要:
The IMS apparatus and methods described in this invention involve setting the ion detector at the highest potential of the drift tube and setting the ionization source at ground or near ground potential. The methods allow significantly simple sample introduction without the limitation of the high potential (voltage) concern of the front end sample delivery. The invention also describes bringing samples directly into the ion mobility drift tube. The invention further describes using single syringe for sample introduction via an electrospray ionization method.
摘要:
The IMS apparatus and methods described in this invention involve setting the ion detector at the highest potential of the drift tube and setting the ionization source at ground or near ground potential. The methods allow significantly simple sample introduction without the limitation of the high potential (voltage) concern of the front end sample delivery. The invention also describes bringing samples directly into the ion mobility drift tube. The invention further describes using single syringe for sample introduction via an electrospray ionization method.
摘要:
The IMS apparatus and methods described in this invention involve setting the ion detector at the highest potential of the drift tube and setting the ionization source at ground or near ground potential. The methods allow significantly simple sample introduction without the limitation of the high potential (voltage) concern of the front end sample delivery. The invention also describes bringing samples directly into the ion mobility drift tube. The invention further describes using single syringe for sample introduction via an electrospray ionization method. In addition, automation of the direct spray needle can be achieved by setting up array of the spray needles that are loaded in a manner that rotates and/or moves to the next spray needle in the ESI source region.
摘要:
The IMS apparatus and methods described in this invention involve setting the ion detector at the highest potential of the drift tube and setting the ionization source at ground or near ground potential. The methods allow significantly simple sample introduction without the limitation of the high potential (voltage) concern of the front end sample delivery. The invention also describes bringing samples directly into the ion mobility drift tube. The invention further describes using single syringe for sample introduction via an electrospray ionization method.