Abstract:
A display (10) utilizes a drive scheme that minimizes power dissipation by reducing the operating frequency at which columns (12) operate. The operating frequency is reduced by positioning column timing signals (32) near an end of a horizontal display time (38,39,48,49) if the next horizontal display time also has data to be displayed.
Abstract:
An array of thin film piezoelectric resonators are formed on a substrate and connected in parallel to form a single piezoelectric resonator with enhanced piezoelectric coupling. The array includes a first conductive layer positioned on the substrate and defining a first electrode, a plurality of columns of piezoelectric material positioned on the conductive layer and each defining a separate piezoelectric resonator, and a second conductive layer positioned on the plurality of columns and defining a second electrode. The columns are selectively deposited or deposited as a single layer and etched into columns.
Abstract:
A field emission display (100, 200, 300) and a method of making the same are disclosed. The field emission display (100, 200, 300) includes an anode (110, 210, 310) having a plurality of cathodoluminescent deposits (120, 220, 320), a back plate (185, 285, 385) including a cathode (130, 230, 330) having a plurality of field emitters (140, 240, 340) and being affixed to a cathode reinforcement member (170, 270, 370), and a plurality of side members (150, 250, 350) disposed between the anode (110, 210, 310) and the cathode (130, 230,330) and hermetically affixed thereto. The thicknesses of the anode (110, 210, 310) and the back plate (185, 285, 385) are sufficient to provide the structural support necessary to maintain the mechanical integrity of the field emission display (100, 200, 300).
Abstract:
A conductor array (100), for addressing a plurality of field emitters (130), including a plurality of cathode conductors (106, 108, 110) having conductive cathode connectors (126), a plurality of gate conductors (104) having a plurality of conductive gate connectors (116, 118, 120), and a plurality of fusible links (134, 138), which are located at a plurality of overlapping regions (103) of the cathode conductors (106, 108, 110) and the gate conductors (104) and which can be electrically severed to isolate electrical shorts existing at the overlapping regions (103).
Abstract:
A field emission device (10) has a gate (17) including an opening (22) for the communication of electrons from an emitter (14) to an anode (16). A resistive layer (18) is disposed at least on the inner surface (23) of the gate (17) surrounding the opening (22). The field emission device (10) may further include an insulating, dielectric layer (19). The resistive layer (18) and the dielectric layer (19) reduce arcing between the emitter (14) and the gate (17) in the field emission device (10).
Abstract:
A display (10) includes an electron source having a row conductor (17) that utilizes a plurality of longitudinal elements (26, 28). Each longitudinal element (26, 28) has extraction section (19, 23) that extends from the longitudinal element toward an adjacent longitudinal element. The longitudinal elements (26, 28) are electrically connected by a plurality of transverse connectors (29, 38, 39). When a short occurs between the row (17) and an underlying column (12, 36), the shorted portion can be electrically isolated so that the remainder of the row remains functional.
Abstract:
A digital video word (14) that is utilized to specify an image to be displayed by a field emission device is divided into a plurality of digital subwords (16, 17). Each digital subword (16, 17) is utilized to create a control signal (21, 22) that is applied to an input (23, 26, 32, 33) of a drive source (24, 27, 31). The digital subwords (16, 17) divide the control signals (21, 22) into time slots wherein each time slot has a duration that is greater than the duration of time slots represented by the original digital video word (14). In response to the control signals (21, 22) the drive source (24, 27, 31) provides a drive signal (28, 34) that has an output value and duration that is controlled by the duration of the control signals, and by an active and inactive state encoded by the control signals.