摘要:
A method of manufacturing a semiconductor device is disclosed. A p-type substrate is doped to form an N-well in a selected portion of a p-type substrate adjacent an anode region of the substrate. A p-type doped region is formed in the anode region of the p-type substrate. The p-type doped region and the N-well form a p-n junction.
摘要:
A method of manufacturing a semiconductor device is disclosed. A p-type substrate is doped to form an N-well in a selected portion of a p-type substrate adjacent an anode region of the substrate. A p-type doped region is formed in the anode region of the p-type substrate. The p-type doped region and the N-well form a p-n junction.
摘要:
A method of manufacturing a semiconductor device is disclosed. A p-type substrate is doped to form an N-well in a selected portion of a p-type substrate adjacent an anode region of the substrate. A p-type doped region is formed in the anode region of the p-type substrate. The p-type doped region and the N-well form a p-n junction.
摘要:
A method of manufacturing a semiconductor device is disclosed. A p-type substrate is doped to form an N-well in a selected portion of a p-type substrate adjacent an anode region of the substrate. A p-type doped region is formed in the anode region of the p-type substrate. The p-type doped region and the N-well form a p-n junction.
摘要:
FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
摘要:
In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
摘要:
A method of forming a semiconductor device is provided that includes forming a replacement gate structure on portion a substrate, wherein source regions and drain regions are formed on opposing sides of the portion of the substrate that the replacement gate structure is formed on. An intralevel dielectric is formed on the substrate having an upper surface that is coplanar with an upper surface of the replacement gate structure. The replacement gate structure is removed to provide an opening to an exposed portion of the substrate. A high-k dielectric spacer is formed on sidewalls of the opening, and a gate dielectric is formed on the exposed portion of the substrate. Contacts are formed through the intralevel dielectric layer to at least one of the source region and the drain region, wherein the etch that provides the opening for the contacts is selective to the high-k dielectric spacer and the high-k dielectric capping layer.
摘要:
A method of forming a semiconductor device is provided that includes forming a replacement gate structure on portion a substrate, wherein source regions and drain regions are formed on opposing sides of the portion of the substrate that the replacement gate structure is formed on. An intralevel dielectric is formed on the substrate having an upper surface that is coplanar with an upper surface of the replacement gate structure. The replacement gate structure is removed to provide an opening to an exposed portion of the substrate. A high-k dielectric spacer is formed on sidewalls of the opening, and a gate dielectric is formed on the exposed portion of the substrate. Contacts are formed through the intralevel dielectric layer to at least one of the source region and the drain region, wherein the etch that provides the opening for the contacts is selective to the high-k dielectric spacer and the high-k dielectric capping layer.
摘要:
In a replacement gate scheme, a continuous material layer is deposited on a bottom surface and a sidewall surface in a gate cavity. A vertical portion of the continuous material layer is removed to form a gate component of which a vertical portion does not extend to a top of the gate cavity. The gate component can be employed as a gate dielectric or a work function metal portion to form a gate structure that enhances performance of a replacement gate field effect transistor.
摘要:
A method includes forming a dummy gate in a dielectric layer on a substrate, the dummy gate including a sacrificial oxide layer and a dummy gate body over the sacrificial oxide layer; removing the dummy gate body resulting in a gate opening with the sacrificial oxide layer in a bottom of the gate opening; performing an off-axis sputtering to create an angled entrance on the gate opening; removing the sacrificial oxide layer; and forming a replacement gate in the gate opening.