Abstract:
A system and method for performing voltage to current conversion, the system comprising of a first set of devices that senses the input voltage signal through its input terminal and replicates said input voltage across a second set of devices which then converts said replicated input voltage signal to an output current signal; a third set of devices that transfers the output current signal to output terminals; a differential feedback loop comprising an amplifier positioned between a first one of the first set of devices and a first one of the third set of devices; and a common mode feedback loop that regulates the output average voltage to a reference voltage.
Abstract:
An apparatus for and method of performing a most informative feature extraction (MIFE) method in which a facial image is separated into sub-regions, and each sub-region makes individual contribution for performing facial recognition. Specifically, each sub-region is subjected to a sub-region based adaptive gamma (SadaGamma) correction or sub-region based histogram equalization (SHE) in order to account for different illuminations and expressions. A set of reference images is also divided into sub-regions and subjected to the SadaGamma correction or SHE. A comparison is made between the each corrected sub-region and each corresponding sub-region of the reference images. Based upon the comparisons made individually for the sub-regions of the facial image, one of the stored reference images having the greatest correspondence is chosen. While usable individually, using the MIFE and/or SadaGamma correction or SHE together achieves a lower error ratio in face recognition under different expressions, illuminations and occlusions.
Abstract:
An ESD circuit includes a plurality of MOS devices arranged in a stack, wherein each of the MOS devices comprises a source, a drain, and a gate; a voltage source inputting a supply voltage to the stack of MOS devices; a first plurality of resistors dividing the supply voltage to each source and each drain of the MOS devices in the stack; a second plurality of resistors biasing the supply voltage to each gate of the MOS devices in the stack; an inverter device operatively connected to the second plurality of resistors; a time lag circuit that turns the inverter device on and off; and a plurality of capacitors pulling the voltage to each gate of the MOS devices in the stack to the supply voltage upon the inverter device turning off.
Abstract:
A continuous time sigma-delta analog-to-digital converter (CT ΣΔADC) including an integrator, which includes an operational amplifier having at least one input terminal that receives an input signal, a feedback mechanism operatively connected to the operational amplifier, at least one capacitor coupled to the operational amplifier and the feedback mechanism, a reset switch coupled to the at least one capacitor, the operational amplifier, and the feedback mechanism, and a single directional voltage-to-current converter coupled to the input terminal. The single directional voltage-to-current converter translates a differential signal voltage only to a differential signal current. The reset switch resets the feedback mechanism. The single directional voltage-to-current converter behaves a one-directional resistor. The integrator prevents current generation when there is a non-linear disturbance at the input terminal of the operational amplifier. The single directional voltage-to-current converter clips an input current that exceeds a threshold value.
Abstract:
A low noise, low power differential two-stage amplifier includes a first stage comprising a pair of electrical devices that sense an input signal difference across the pair of electrical devices; and a control feedback loop operatively connected to the first stage, wherein the first stage in combination with the control loop feedback is adapted to place an exact copy of the signal across a first pair of resistive components, wherein the first pair of resistive components are adapted to generate a differential signal current, wherein the control feedback loop is adapted to ensure that the differential signal current goes a second pair of resistive components to generate a voltage output. Preferably, the first and second pair of resistive components are in ratio to produce the exact copy of the signal with some gain at an output of the first stage.
Abstract:
A method for processing each of chest X-ray images photographed by an X-ray imaging apparatus, includes the steps of: analyzing characteristics of lung images in the chest X-ray images; sorting the chest X-ray images, based on said result of analysis; and displaying the result of sorting.
Abstract:
A low noise, low power differential two-stage amplifier includes a first stage comprising a pair of electrical devices that sense an input signal difference across the pair of electrical devices; and a control feedback loop operatively connected to the first stage, wherein the first stage in combination with the control loop feedback is adapted to place an exact copy of the signal across a first pair of resistive components, wherein the first pair of resistive components are adapted to generate a differential signal current, wherein the control feedback loop is adapted to ensure that the differential signal current goes a second pair of resistive components to generate a voltage output. Preferably, the first and second pair of resistive components are in ratio to produce the exact copy of the signal with some gain at an output of the first stage.
Abstract:
An image acquisition method includes determining the starting position, the ending position of a region of interest, and the value of overlap of the region of interest in the two adjacent sub-images, calculating the number of the sub-images required to be captured, the component of field of view at the direction of tube movement and the positions of the tube and the detector corresponding to each sub-image based on the starting position and the ending position of a region of interest and the value of the overlap. The method also includes moving the tube and the detector to each position and capturing the region of interest to obtain sub-images at the positions, and pasting the several sub-images together to form an image of the said region of interest.
Abstract:
A face detection method and apparatus using a level-set method. The method includes: laying a first initial shape model over a face image; evolving shape curves of the first initial shape model using the level-set method; detecting first through M-th neighboring boundary points that neighbor first through M-th initial boundary points of the first initial shape model, and that neighbor the evolved shape curves, M being a positive integer larger than 1; laying a modified shape model rendered using the detected first through M-th neighboring boundary points over the face image; detecting a rotation angle of the modified shape model; determining whether the detected rotation angle of the modified shape model is within a predetermined angle range; and selecting one of a second initial shape model, which is rotated to the left, or a third initial shape model, which is rotated to the right, according to the detected rotation angle, and laying the selected initial shape model over the face image, and returning to the detecting of the first through M-th neighboring boundary points, when the detected rotation angle of the modified shape model is outside the predetermined angle range.
Abstract:
A global localization apparatus, medium, and method, with the global localization method including selecting one from a plurality of samples and shifting the selected sample according to a movement of a robot, generating a new sample within a predetermined range of the shifted sample, determining either the shifted sample or the new sample as a next sample at a next time step according to a predetermined condition for the shifted sample and the next sample, repeating for all the samples, and estimating a next position of the robot according to positions of the next samples when the number of next samples is equal to or larger than the maximum number of samples.