摘要:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
摘要:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
摘要:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
摘要:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
摘要:
An apparatus for treating a surface of an article includes a chamber for receiving an article to be treated. A dispenser dispenses a treatment liquid including inorganic acid onto the article. A tank stores the treatment liquid. An ozone generator communicates with a supply line entering or exiting the tank to mix ozone with the treatment liquid. A cooler cools the treatment liquid to a subambient temperature in a range of 3° C. to less than 20° C. A heater heats a surface of an article to be treated to a temperature at least 30° C. greater than a temperature of the treatment liquid when applied to the article.
摘要:
Mixtures containing concentrated sulfuric acid used for stripping photoresist from semiconductor wafer, such as SOM and SPM mixtures, are more quickly removed from a wafer surface using another liquid also containing high concentration of sulfuric acid, with the second liquid furthermore containing controlled small amounts of fluoride ion. The second liquid renders the wafer surface hydrophobic, which permits easy removal of the sulfuric acid therefrom by spinning and/or rinsing.
摘要:
A system and method for patterning metal oxide materials in a semiconductor structure. The method comprises a first step of depositing a layer of metal oxide material over a substrate. Then, a patterned mask layer is formed over the metal oxide layer leaving one or more first regions of the metal oxide layer exposed. The exposed first regions of the metal oxide layer are then subjected to an energetic particle bombardment process to thereby damage the first regions of the metal oxide layer. The exposed and damaged first regions of the metal oxide layer are then removed by a chemical etch. Advantageously, the system and method is implemented to provide high-k dielectric materials in small-scale semiconductor devices. Besides using the ion implantation damage (I/I damage) plus wet etch technique to metal oxides (including metal oxides not previously etchable by wet methods), other damage methods including lower energy, plasma-based ion bombardment, may be implemented. Plasma-based ion bombardment typically uses simpler and cheaper tooling, and results in less collateral damage to underlying structures as the damage profile can be more easily localized to the depth of the thin metal oxide film.
摘要:
Disclosed is a device for wet treatment of disk-like substrates comprising a first plate (10) with a size and shape being able to overlap a disk-like substrate to be treated, holding means (22) for holding a disk-like substrate (W) parallel to said first plate in a s distance of 0.2 to 5 mm, rotating means (37) for rotating the disk-like substrate (W) about a rotation axis (A) substantially perpendicular to said first plate, first dispensing means (14) with a first dispensing opening (16) in the first gap for introducing fluid into a first gap (11) between said first plate (10) and a disk-like substrate (W) when being treated, and shifting means (34) for shifting the position of said first dispensing opening (16) from a first position (P1) to a second position (P2) wherein the distance of said first position (P1) to the rotation axis (A) is smaller than the distance of said second position (P2) to the rotation axis (A). Furthermore an associated method is disclosed.
摘要:
Improved removal of ion-implanted photoresist in a single wafer front-end wet processing station is achieved by dissolving gaseous ozone into relatively cool inorganic acid, dispensing the acid ozone mixture onto a wafer, and rapidly heating the surface of the wafer to a temperature at least 30° C. higher than the temperature of the acid ozone mixture.