Abstract:
A plasma source comprises a thermionic emitter (2) heated by an induction coil (7), which also provides radiofrequency energy within an electrically insulated cylindrical former (1). A cylindrical anode (10) is concentric with emitter (2) and axially displaced therefrom, generating a potential difference between anode (10) and emitter (2). The potential difference between anode (2) and ground and axial magnetic fields causes the plasma to be extracted from the source. Emitter (2) is held at negative potential via a conductive support (5). Process gas is introduced near emitter (2) and a secondary gas injected in the anode space. Radiofrequency excitation of emitter (2) generates electrons via thermionic and field effects, resulting in efficient plasma generation. Both electron generation effects contribute to a broad energy spectrum of electrons, providing effective neutralization of the plasma. Moreover, the time varying axial magnetic field induced by coil (7) in the vicinity of emitter (2) provides enhancement of plasma generation and confinement of plasma to minimize erosion of emitter (2).
Abstract:
The invention relates to apparatus and a method for depositing material onto substrates, particularly optical substrates, to form a coating thereon. The apparatus and method incorporates the use of a series of magnetrons provided to be controlled to sputter deposit material provided in targets mounted therein, on to the substrates. There is provided a voltage to the magnetrons to operate the same and the level of voltage which is required to form required coating or coating layer characteristics is determined by using monitoring apparatus, at least when forming the coating or coating layer for the first time. The appropriate voltage level data for operation of the magnetrons can be held in a database and subsequently used to control the voltage level when forming an identified coating or layers of coatings.
Abstract:
The invention relates to a method and apparatus for the application of material to form a layer of an organic electroluminescent device. The material is sputter deposited typically from at least one target of material held in respect to a magnetron in a coating chamber. The magnetrons used can be unbalanced magnetrons and/or are provided with other magnetrons and/or magnet arrays in a closed field configuration. The material is found to be deposited in a manner which prevents or minimises damage to the device and hence reduces or removes the need for a barrier layer to be applied.
Abstract:
The invention relates to apparatus and a method for depositing material onto substrates, particularly optical substrates, to form a coating thereon. The apparatus and method incorporates the use of a series of magnetrons provided to be controlled to sputter deposit material provided in targets mounted therein, on to the substrates. There is provided a voltage to the magnetrons to operate the same and the level of voltage which is required to form required coating or coating layer characteristics is determined by using monitoring apparatus, at least when forming the coating or coating layer for the first time. The appropriate voltage level data for operation of the magnetrons can be held in a database and subsequently used to control the voltage level when forming an identified coating or layers of coatings.
Abstract:
Apparatus (10) for treating a substrate, comprising: a vacuum chamber (12); a substrate carrier (14) adapted to carry a substrate (16) to be treated; a source material holder (22) for holding a source material (34) with which the substrate (16) is to be treated; and vaporising or sputtering means (20) for vaporising/sputtering the source material (34); wherein the source material holder (22) includes a positioning means (24) for relatively moving the source material (34) towards the substrate carrier (14).
Abstract:
The invention relates to a method and apparatus for the application of material to form a layer of an organic electroluminescent device. The material is sputter deposited typically from at least one target of material held in respect to a magnetron in a coating chamber. The magnetrons used can be unbalanced magnetrons and/or are provided with other magnetrons and/or magnet arrays in a closed field configuration. The material is found to be deposited in a manner which prevents or minimises damage to the device and hence reduces or removes the need for a barrier layer to be applied.