摘要:
A method is provided. A communication is received by an input pin of an IC over a single-wire bus, where the communication includes a command byte. If the command byte is an initialization command byte, a self-addressing operation is performed to identify a bus address for the IC. Alternatively, if the command byte is a data movement command byte, a data movement operation is performed. When data movement operation is performed, the bus interface of the IC is set from the transparent mode to the operational mode if an operation address from the command byte matches the bus address so that a register identified in the command byte can be accessed and data movement with the register can be performed.
摘要:
Various systems and methods for capturing data are disclosed. For example, some embodiments of the present invention provide methods for performing a first analog to digital conversion using a delta-sigma based analog to digital converter, and performing a second analog to digital conversion using a SAR based analog to digital converter. The delta-sigma converter provides a first portion of a conversion result, and the SAR based analog to digital converter provides a second portion of the conversion result. The methods further include combining the first portion of the conversion result with the second portion of the conversion result to produce a combined conversion result.
摘要:
A differential amplifier includes a differential input pair (2A) coupled to a folded cascode stage (2B) and a common mode feedback circuit (34) including a tracking circuit (30A) coupled to first (Vout−) and second (Vout+) outputs of the folded cascode stage (2B). The first and second outputs are coupled to first terminals of first (31A) and second (31B) tracking capacitors which have second terminals on which a first common mode output signal (VCM1) is produced and also are coupled to first terminals of third (32A) and fourth (32B) tracking capacitors, respectively, which have second terminals on which a second common mode output signal (VCM2) is produced. The first and third tracking capacitors are discharged by first (27A) and second (27B) switches that directly couple the first and second outputs to first and second inputs of a common mode feedback amplifier (4). A desired common mode output voltage (VCM-IN) is applied to a third input of the common mode feedback amplifier. The switches are opened to cause the first and second common mode output voltages to be generated, causing a common mode feedback control signal (VCMFB) to be generated for biasing the folded cascode stage.
摘要:
A differential amplifier includes a differential input pair (2A) coupled to a folded cascode stage (2B) and a common mode feedback circuit (34) including a tracking circuit (30A) coupled to first (Vout−) and second (Vout+) outputs of the folded cascode stage (2B). The first and second outputs are coupled to first terminals of first (31A) and second (31B) tracking capacitors which have second terminals on which a first common mode output signal (VCM1) is produced and also are coupled to first terminals of third (32A) and fourth (32B) tracking capacitors, respectively, which have second terminals on which a second common mode output signal (VCM2) is produced. The first and third tracking capacitors are discharged by first (27A) and second (27B) switches that directly couple the first and second outputs to first and second inputs of a common mode feedback amplifier (4). A desired common mode output voltage (VCM-IN) is applied to a third input of the common mode feedback amplifier. The switches are opened to cause the first and second common mode output voltages to be generated, causing a common mode feedback control signal (VCMFB) to be generated for biasing the folded cascode stage.
摘要翻译:差分放大器包括耦合到折叠共源共栅级(2B)的差分输入对(2A)和包括耦合到第一(Vout)的跟踪电路(30A)的共模反馈电路(34) SUP>)和第二(Vout + SUP))输出。 第一和第二输出耦合到具有第二端子的第一(31A)和第二(31B)跟踪电容器的第一端子,第二端子产生第一共模输出信号(V SUB CM1) 也分别耦合到第三(32A)和第四(32B)个跟踪电容器的第一端子,它们具有产生第二共模输出信号(V SUB CM2)的第二端子。 第一和第三跟踪电容器通过将第一和第二输出直接耦合到共模反馈放大器(4)的第一和第二输入的第一(27A)和第二(27B)开关放电。 所需的共模输出电压(V SUB-IN IN)被施加到共模反馈放大器的第三输入端。 打开开关以产生第一和第二共模输出电压,从而产生用于偏置折叠共源共栅级的共模反馈控制信号(V SUB CMBB)。
摘要:
Various systems and methods for capturing data are disclosed. For example, some embodiments of the present invention provide methods for performing a first analog to digital conversion using a delta-sigma based analog to digital converter, and performing a second analog to digital conversion using a SAR based analog to digital converter. The delta-sigma converter provides a first portion of a conversion result, and the SAR based analog to digital converter provides a second portion of the conversion result. The methods further include combining the first portion of the conversion result with the second portion of the conversion result to produce a combined conversion result.
摘要:
A method is provided. A communication is received by an input pin of an IC over a single-wire bus, where the communication includes a command byte. If the command byte is an initialization command byte, a self-addressing operation is performed to identify a bus address for the IC. Alternatively, if the command byte is a data movement command byte, a data movement operation is performed. When data movement operation is performed, the bus interface of the IC is set from the transparent mode to the operational mode if an operation address from the command byte matches the bus address so that a register identified in the command byte can be accessed and data movement with the register can be performed.
摘要:
A comparator (12A,12B) includes a first differential input stage (10) including first (MN2) and second (MN3) input transistors and a load (MP9,MP10), the first input transistor (MN2) having a gate, source, and drain coupled to a first input voltage (Vin−), a first tail current source, and the load, respectively. The second input transistor has a gate and source coupled to a second input voltage (Vin+) and a first tail current source. A second differential input stage (11) includes a third (MN4) and fourth (MN5) input transistors, the third input transistor having a gate and source coupled to a first reference voltage (Vref+) and the second tail current source, respectively. The fourth input transistor (MN5) has a gate and a source coupled to a second reference voltage (Vref−) and the second tail current source, respectively. Drains of the third and fourth input transistors are coupled to the load. An output stage (6A) produces a comparator output voltage (Vout) in response to an output (V2) produced by the first and second (11) differential input stages. A switching threshold of the comparator is determined by a difference between the first and second reference voltages.
摘要:
A programmable offset amplifier includes first (M1) and second (M2) input transistors having differentially connected sources and gates coupled to first (Vin+) and second (Vin−) input voltages. A tail current (Itail1) is shared between the first and second input transistors. First (M3) and second (M4) load devices are coupled between a reference voltage and drains of the first and second input transistors, respectively. An output stage (13) has a first input (+) coupled to the drain of the second input transistor and a second input (−) coupled to the drain of the first input transistor. Programmable voltage changes are produced on input elements of programmable input offset circuitry to cause changes in offset voltages associated with electrodes of the input transistors which are reflected back to the amplifier input to provide a large programmable input-referred offset voltage.
摘要:
Gain errors are corrected in an ADC chip including an integrator (17), a comparator (30), and a digital filter (37) by storing a gain-adjusted LSB size based on measured gain error in a memory (44). The gain-adjusted LSB size is applied to the digital filter to cause gain-adjusted LSB size values to be added to or subtracted from accumulated content of the digital filter in accordance with a first or second state, respectively, of the comparator (30) during each cycle of the ADC. The final accumulated content after all required cycles of the ADC is a gain-corrected digital output signal (Dout(gain-corrected)).
摘要:
A comparator (12A,12B) includes a first differential input stage (10) including first (MN2) and second (MN3) input transistors and a load (MP9,MP10), the first input transistor (MN2) having a gate, source, and drain coupled to a first input voltage (Vin−), a first tail current source, and the load, respectively. The second input transistor has a gate and source coupled to a second input voltage (Vin+) and a first tail current source. A second differential input stage (11) includes a third (MN4) and fourth (MN5) input transistors, the third input transistor having a gate and source coupled to a first reference voltage (Vref+) and the second tail current source, respectively. The fourth input transistor (MN5) has a gate and a source coupled to a second reference voltage (Vref−) and the second tail current source, respectively. Drains of the third and fourth input transistors are coupled to the load. An output stage (6A) produces a comparator output voltage (Vout) in response to an output (V2) produced by the first and second (11) differential input stages. A switching threshold of the comparator is determined by a difference between the first and second reference voltages.