摘要:
The present disclosure describes the identification and use of aptamers and photoaptamers having slower dissociation rate constants than those obtained using previously described methods. Specifically, the present disclosure describes methods for the identification and use of aptamers to one or more targets within a histological or cytological sample, which have slow rates of dissociation. The aptamers may be used to assess localization, relative density, and presence or absence of one or more targets in cytological and histological samples. Targets may be selected that are specific and diagnostic of a given disease state for which the sample was collected. The aptamers may also be used to introduce target specific signal moieties. In addition to target identification, the aptamers may be used to amplify signal generation through a variety of methods.
摘要:
The present disclosure describes methods, devices, reagents, and kits for the detection of one or more target molecules that may be present in a test sample. In one embodiment, a test sample is contacted with an aptamer that includes a tag and has a specific affinity for a target molecule. An aptamer affinity complex that includes an aptamer bound to its target molecule is allowed to form. If the test sample contains the target molecule, an aptamer affinity complex will generally form in the test sample. The aptamer affinity complex is optionally converted to an aptamer covalent complex that includes an aptamer covalently bound to its target molecule. The aptamer affinity complex (or optional aptamer covalent complex) can then be detected and/or quantified using any of a variety of methods known to one skilled in the art, including using a solid support, using mass spectrometry, and using quantitative polymerase chain reaction (Q-PCR).
摘要:
The present application includes biomarkers, methods, devices, reagents, systems, and kits for the detection and diagnosis of ovarian cancer. In one aspect, the application provides biomarkers that can be used alone or in various combinations to diagnose ovarian cancer or permit the differential diagnosis of a pelvic mass as benign or malignant. In another aspect, methods are provided for diagnosing ovarian cancer in an individual, where the methods include detecting, in a biological sample from an individual, at least one biomarker value corresponding to at least one biomarker selected from the group of biomarkers provided in Table 1, wherein the individual is classified as having ovarian cancer, or the likelihood of the individual having ovarian cancer is determined, based on the at least one biomarker value.
摘要:
The present invention provides novel methods and reagents for detecting the binding of protein targets to nucleic acid ligands. Using Universal Protein Stains (UPS), proteins bound by nucleic acid ligands may be labeled with a detectable moiety. The methods and reagents are particularly useful for the detection of protein targets bound to multiplexed arrays of nucleic acid ligands. The present invention also provides novel methods for the multiplexed evaluation of photocrosslinking nucleic acid ligands. The methods allow one simultaneously to: (1) evaluate the performance (dynamic range) of a plurality of photocrosslinking nucleic acid ligands; and (2) assess the specificity of each photocrosslinking nucleic acid ligand for its cognate target protein. Photocrosslinking nucleic acid ligands with the most desirable properties can then be selected for use in diagnostic and prognostic medical assays. The present invention also provides a photocrosslinking nucleic acid ligand that binds specifically to HIV gp120MN.
摘要:
The present disclosure describes improved SELEX methods for generating nucleic acid ligands that are capable of binding to target molecules and improved photoSELEX methods for generating photoreactive nucleic acid ligands that are capable of both binding and covalently crosslinking to target molecules. The disclosure further describes nucleic acid libraries having expanded physical and chemical properties and their use in SELEX and photoSELEX; methods for increasing the crosslinking efficiencies of photoaptamers; methods for producing photoaptamers having selective modifications that enhance functionality and minimize non-specific photoreactions; and methods for generating truncated nucleic acid ligands from nucleic acid ligands of longer length. The disclosure further describes aptamers and photoaptamers obtained by using any of the foregoing.
摘要:
The present disclosure includes biomarkers, methods, devices, reagents, systems, and kits for the detection and diagnosis of cancer. In one aspect, the disclosure provides biomarkers that can be used alone or in various combinations to diagnose cancer. In another aspect, methods are provided for diagnosing cancer in an individual, where the methods include detecting, in a biological sample from an individual, at least one biomarker value corresponding to at least one biomarker selected from the group of biomarkers provided in Table 47, wherein the individual is classified as having cancer, or the likelihood of the individual having cancer is determined, based on the at least one biomarker value.
摘要:
The present disclosure describes methods for producing aptamers and photoaptamers having slower dissociation rate constants than are obtained using prior SELEX and photoSELEX methods. The disclosure further describes aptamers and photoaptamers having slower dissociation rate constants than those obtained using prior methods. This invention relates to the field of diagnostic histology, cytology, histopathology, and cytopathology methods and reagents for the detection of various disease states. More specifically, the invention relates to the use of aptamers in histologic, cytologic, histopathic, and/or cytopathic diagnostic methods. Aptamers may be provided that react with specific target molecules contained within a histological or cytological sample. Aptamers may be used to assess localization, relative density, and presence or absence of one or more target. Targets may be selected that are specific and diagnostic of a given disease state for which the sample was collected. Aptamers may be used to introduce target specific signal moieties. Antigen retrieval methods may be applied to the sample prior to reaction with the specific aptamer/s to improve interaction of the aptamer and target within the sample. Or aptamers may be developed for the specific target that eliminates the need for the antigen retrieval process. In addition to target identification, aptamers may be used to amplify signal generation through a variety of methods.
摘要:
The present disclosure describes improved SELEX methods for producing aptamers that are capable of binding to target molecules and improved photoSELEX methods for producing photoreactive aptamers that are capable of both binding and covalently crosslinking to target molecules. Specifically, the present disclosure describes methods for producing aptamers and photoaptamers having slower dissociation rate constants than are obtained using prior SELEX and photoSELEX methods. The disclosure further describes aptamers and photoaptamers having slower dissociation rate constants than those obtained using prior methods. In addition, the disclosure describes aptamer constructs that include a variety of functionalities, including a cleavable element, a detection element, and a capture or immobilization element.
摘要:
A nucleic acid ligand “biochip” is disclosed, consisting of a solid support to which one or more specific nucleic acid ligands is attached in a spatially defined manner. Each nucleic acid ligand binds specifically and avidly to a particular target molecule contained within a test mixture, such as a bodily fluid. The target molecules include, but are not limited to, proteins (cellular, viral, bacterial, etc.) hormones, sugars, metabolic byproducts, cofactor, and intermediates, drugs, and toxins. Contacting the test mixture with the biochip leads to the binding of a target molecule to its cognate nucleic acid ligand. The biochip may then be contacted with a reagent(s) that reacts covalently with proteins and not with nucleic acids. Each protein target in the test mixture may then detected by detecting the presence of the reagent at the appropriate address on the biochip.
摘要:
The present disclosure describes methods, devices, reagents, and kits for the detection of one or more target molecules that may be present in a test sample. In one embodiment, a test sample is contacted with an aptamer that includes a tag and has a specific affinity for a target molecule. An aptamer affinity complex that includes an aptamer bound to its target molecule is allowed to form. If the test sample contains the target molecule, an aptamer affinity complex will generally form in the test sample. The aptamer affinity complex is optionally converted to an aptamer covalent complex that includes an aptamer covalently bound to its target molecule. The aptamer affinity complex (or optional aptamer covalent complex) can then be detected and/or quantified using any of a variety of methods known to one skilled in the art, including using a solid support, using mass spectrometry, and using quantitative polymerase chain reaction (Q-PCR).