Abstract:
Replicas of a surface relief hologram, or other light diffraction pattern, are coated with a transparent material having substantially the same refractive index as the holograms to conform to the surface relief patterns and thus hide the hologram. The coating is pealed by hand off of the surface relief pattern in order to reveal an image visible in light reflected from the hologram. Such hidden holograms can be attached to a greeting card to reveal a greeting when the coating is removed, attached to pages of magazines or books to carry an advertising message, and the like. Other uses include making lottery tickets or other indications of a prize from such holograms, since the indication of any prize won by the holder remains hidden until the coating is pulled off, even though the coating is optically transparent.
Abstract:
Non-continuous reflective holograms or diffraction gratings are provided in various forms for authenticating documents and things, and for decorative and product packaging applications. In one specific authentication application, such a hologram or diffraction grating is firmly attached to a surface that contains visual information desired to be protected from alteration. Examples of such information include written personal data and photograph on a passport, driver's license, identity card and the like. The reflective discontinuous hologram is formed in a pattern that both permits viewing the protected information through it and the viewing of an authenticating image or other light pattern reconstructed from it in reflection. In another specific authentication application, a non-transparent structure of two side-by-side non-continuous holograms or diffraction patterns, each reconstructing a separate image or other light pattern, increases the difficulty of counterfeiting the structure.
Abstract:
A technique for forming a mold to replicate large numbers of plastic articles, such as by injection or blow molding, wherein the mold contains a hologram or other microstructure for transfer to an outside surface of the molded article. The mold is made by electrodepositing a metal on a model of the article to be molded. Before this deposition, the hologram or other microstructure is formed on a surface area of the model by any one of several techniques. The result is a unitary mold piece in the shape of the article and having the hologram or other microstructure integrally formed on its inside surface.
Abstract:
The present invention provides a novel method and system for extrusion embossing. In particular, the present invention provides a method and system for embossing a multi-layer flexible packaging material whereby one layer is embossed simultaneously with the extrusion of an adjacent layer and the lamination of an additional layer.
Abstract:
A method and system for replicating microstructure surface relief patterns, such as diffraction patterns including holograms, by casting. A liquid casting resin is held between a surface relief master of the microstructure to be replicated and a substrate while the resin is hardened by actinic radiation curing. Application of resin to edges and discontinuities of the master is avoided in order to reduce undesirable build-up of resin on these areas of the master. The hardened resin surface relief replica may optionally be coated with a discontinuous graphical pattern of a clear or colored paint that eliminates the effect of the surface relief pattern in the regions so coated.
Abstract:
A replica hologram structure wherein an information carrying relief pattern on one surface of the hologram is not metallized for reflection, as is the usual case, but rather air between the hologram and a supporting substrate causes incident light to be reflected from the surface relief pattern, thereby to form a reconstruction of an image or other light pattern. The surface relief pattern may be positioned immediately against the substrate, or, alternatively, held apart from it by spacers. The hologram and substrate are held together by any of a wide variety of mechanisms, including adhesive, welding and static electricity, in a manner that does not interfere with the reconstruction or viewing of the image or other light pattern from the hologram. Such a hologram structure has a use in product packaging and other applications where it is desired to be able to look through the hologram as well as be able to view the image or other light pattern reconstructed from it by reflection.
Abstract:
Non-continuous reflective hologram or diffraction grating devices are provided in various forms for authenticating documents and things, such as those that contain visual information desired to be protected from alteration. Examples of such information include written personal data and photograph on a passport, driver's license, identity card, transportation pass, and the like. The reflective discontinuous hologram or diffraction device is formed in a pattern that both permits viewing the protected information through it and the viewing of an authenticating image or other light pattern reconstructed from it in reflection. The same master hologram or diffraction grating is made into distinct authenticaton devices by forming replicas thereof that have different patterns of reflective material which form distinct indicia, such as a different alpha-numeric character.
Abstract:
A method and system for replicating microstructures surface relief patterns, such as diffraction patterns including holograms, by casting. A liquid casting resin is held between a surface relief master of the microstructure to be replicated and a substrate while the resin is hardened by actinic radiation curing. Application of resin to edges and discontinuities of the master is avoided in order to reduce undesirable build-up of resin on these areas of the master. The hardened resin surface relief replica may optionally be coated with a discontinuous graphical pattern of a clear or colored paint that eliminates the effect of the surface relief pattern in the regions so coated.
Abstract:
A method and system for replicating microstructure surface relief patterns, such as diffraction patterns including holograms, by casting. A liquid casting resin is held between a surface relief master of the microstructure to be replicated and a substrate while the resin is hardened by actinic radiation curing. Application of resin to edges and discontinuities of the master is avoided in order to reduce undesirable build-up of resin on these areas of the master. The hardened resin surface relief replica may optionally be coated with a discontinuous graphical pattern of a clear or colored paint that eliminates the effect of the surface relief pattern in the regions so coated.
Abstract:
Non-continuous reflective holograms or diffraction gratings are provided in various forms for authenticating documents and things, and for decorative and product packaging applications. In one specific authentication application, such a hologram or diffraction grating is firmly attached to a surface that contains visual information desired to be protected from alteration. Examples of such information include written personal data and photograph on a passport, driver's license, identity card and the like. The reflective discontinuous hologram is formed in a pattern that both permits viewing the protected information through it and the viewing of an authenticating image or other light pattern reconstructed from it in reflection. In another specific authentication application, a non-transparent structure of two side-by-side non-continuous holograms or diffraction patterns, each reconstructing a separate image or other light pattern, increases the difficulty of counterfeiting the structure.