Abstract:
There is provided a flash memory device with multi-level cell and a reading and programming method thereof. The flash memory device with multi-level cell includes a memory cell array, a unit for precharging bit line, a bit line voltage supply circuit for supplying a voltage to the bit line, and first to third latch circuits each of which performs different function from each other. The reading and programming methods are performed by LSB and MSB reading and programming operations. A reading method in the memory device is achieved by reading an LSB two times and by reading an MSB one time. A programming method is achieved by programming an LSB one time and programming an MSB one time. Data having multi-levels can be programmed into memory cells by two times programming operations.
Abstract:
There is provided a flash memory device with multi-level cell and a reading and programming method thereof. The flash memory device with multi-level cell includes a memory cell array, a unit for precharging bit line, a bit line voltage supply circuit for supplying a voltage to the bit line, and first to third latch circuits each of which performs different function from each other. The reading and programming methods are performed by LSB and MSB reading and programming operations. A reading method in the memory device is achieved by reading an LSB two times and by reading an MSB one time. A programming method is achieved by programming an LSB one time and programming an MSB one time. Data having multi-levels can be programmed into memory cells by two times programming operations.
Abstract:
A flash memory and programming method are disclosed. The flash memory includes a memory cell array having memory cells arranged in a plurality of word lines including a selected word line and a plurality of non-selected word lines and a plurality of bit lines, a high voltage generator generating a program voltage applied to the selected word line, and a pass voltage applied to at least one of the non-selected word lines adjacent to the selected word line, and control logic controlling the generation of the program voltage, such that the program voltage is incrementally increased during a program operation, and generation of the pass voltage, such that the program voltage is incrementally increased.
Abstract:
A non volatile memory device and method of operating including providing a verification voltage to a gate of a selected memory cell within multiple memory cells and providing a first pass voltage to a gate of a non-selected memory cell within the memory cells during a program verification operation; and providing a read voltage to the gate of the selected memory cell and providing a second pass voltage to the gate of the non-selected memory cell during a read operation. The second pass voltage is greater than the first pass voltage.
Abstract:
A non-volatile semiconductor memory device comprises first and second sub-memory arrays and a strapping line disposed between the first and second sub-memory arrays. A programming operation of the first sub-memory array is performed by simultaneously applying a programming voltage to odd and even bit lines connected to memory cells within the first sub-memory array.
Abstract:
A Silicon-Controlled Rectifier (SCR) for Electrostatic Discharge (ESD) protection includes an isolation device. The isolation device isolates a main ground voltage line, connected to a first cathode, from a peripheral ground voltage line, connected to a second cathode. As result, even when noise occurs in the peripheral ground voltage line during the operation of an integrated circuit, the main ground voltage line maintains a stable voltage level.
Abstract:
A flash memory device includes a plurality of memory blocks. A selected memory block among the plurality of memory blocks includes 2n pages of data. The selected memory block includes different types of memory cells capable of storing different numbers of bits.
Abstract:
A three-dimensional memory device includes a base layer having a memory array and peripheral circuits formed on a bulk silicon substrate, and N circuit layers each having a memory array formed on a silicon-on-insulator (SOI) substrate. The N circuit layers are vertically stacked one on top of the other on the base layer and the uppermost Nth circuit layer additionally includes passive elements
Abstract:
An erasing method of post-programming in a nonvolatile memory device. The method includes post-programming dummy memory cells; verifying whether threshold voltages of the dummy memory cells are greater than or equal to a first voltage; post-programming normal memory cells; and verifying whether threshold voltages of the normal memory cells are greater than or equal to a second voltage. The first voltage is different from the second voltage.
Abstract:
A flash memory device includes a plurality of memory blocks. A selected memory block among the plurality of memory blocks includes 2n pages of data. The selected memory block includes different types of memory cells capable of storing different numbers of bits.