摘要:
Provided is a method for manufacturing a thin-film transistor substrate, in which the etching characteristics of an insulating film and a passivation layer are enhanced. The insulating film and the passivation layer are deposited by low temperature chemical vapor deposition. The method includes disposing a gate wiring on an insulating substrate; disposing a gate insulating film on the gate wiring; disposing a data wiring on the gate insulating film; disposing a passivation layer on the data wiring; and forming a contact hole by etching at least one of the gate insulating film and the passivation layer, wherein at least one of the gate insulating film and the passivation layer is disposed at a temperature of about 280° C. or below, and the forming of the contact hole is performed at a pressure of about 60 mT or below.
摘要:
A method of fabricating a thin film transistor array substrate is presented. The method entails forming a gate interconnection line on an insulating substrate, forming a gate insulating layer on the gate interconnection line, forming a semiconductor layer and a data interconnection line on the semiconductor layer, sequentially forming multiple passivation layers, etching the passivation layers down to a drain electrode that is an extension of the data interconnection line. The portion of the drain electrode that is exposed at this stage is a part of the drain electrode-pixel electrode contact portion. A pixel electrode is formed connected to the drain electrode. Two of the passivation layers have the same composition but are processed at different temperatures. A thin film transistor prepared in the above manner is also presented.
摘要:
A metal line substrate and a method of fabricating thereof, the metal line substrate including an insulating layer and a capping layer disposed on an insulating substrate, a trench defined by the insulating layer and the capping layer disposed on the insulating substrate, a seed layer pattern disposed on the insulating substrate, and a low-resistive conductive layer pattern disposed in the trench and contacting the seed layer pattern. The capping layer pattern includes a protrusion region which is in contact with the low-resistive conductive layer pattern.
摘要:
After forming a signal line including aluminum, an upper layer of an oxide layer including aluminum that covers the signal line is formed in the same chamber and by using the same sputtering target as the signal line, or a buffer layer of an oxide layer including aluminum is formed in a contact hole exposing the signal line during the formation of the contact hole. Accordingly, the contact characteristic between an upper layer including indium tin oxide (“ITO”) or indium zinc oxide (“IZO”) and the signal line may be improved to enhance the adhesion therebetween while not increasing the production cost of the thin film transistor (“TFT”) array panel.
摘要:
A method for manufacturing a thin film transistor array panel includes forming a gate line; forming an insulating layer on the gate line; forming first and second silicon layers first and second metal layers; forming a photoresist pattern having first and second portions; forming first and second metal patterns by etching the first and second metal layers; processing the first metal pattern with SF6 or SF6/He; forming silicon and semiconductor patterns by etching the second and first silicon layers; removing the first portion of the photoresist pattern; forming an upper layer of a data wire by wet etching the second metal pattern; forming a lower layer of the data wire and an ohmic contact by etching the first metal and amorphous silicon patterns; forming a passivation layer including a contact hole on the upper layer; and forming a pixel electrode on the passivation layer.
摘要:
A thin film transistor array panel is provided and includes a gate line, a gate insulating layer covering the gate line, a semiconductor layer disposed on the gate insulating layer, and a data line and a drain electrode disposed on the semiconductor layer. The data line and the drain electrode have a dual-layered structure including a lower layer and an upper layer with the lower layer having a first portion protruded outside the upper layer and the semiconductor layer having a second portion protruded outside the edge of the lower layer.