摘要:
A semiconductor device having a locally buried insulation layer and a method of manufacturing a semiconductor device having the same are provided, in which a gate electrode is formed on a substrate, and oxygen ions are implanted into an active region to form a locally buried insulation layer. An impurity layer is formed on the locally buried insulation layer to form a source/drain. A silicide layer is formed on the source/drain and on the gate electrode. The locally buried insulation layer can prevent junction leakage, decrease junction capacitance and prevent a critical voltage of an MOS transistor from increasing due to body bias, thereby to improve characteristics of the device.
摘要:
A method of manufacturing a semiconductor device includes forming a gate electrode on a semiconductor substrate and a sidewall spacer on the gate electrode. Then, a portion of the semiconductor substrate at both sides of the sidewall spacer is partially etched to form a trench. A SiGe mixed crystal layer is formed in the trench. A silicon layer is formed on the SiGe mixed crystal layer. A portion of the silicon layer is partially etched using an etching solution having different etching rates in accordance with a crystal direction of a face of the silicon layer to form a capping layer including a silicon facet having an (111) inclined face.
摘要:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
摘要:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
摘要:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
摘要:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a trench in an active region and the trench may include a notched portion of the active region. The methods may also include forming an embedded stressor in the trench. The embedded stressor may include a lower semiconductor layer and an upper semiconductor layer, which has a width narrower than a width of the lower semiconductor layer. A side of the upper semiconductor layer may not be aligned with a side of the lower semiconductor layer and an uppermost surface of the upper semiconductor layer may be higher than an uppermost surface of the active region.
摘要:
Semiconductor devices including a stressor in a recess and methods of forming the semiconductor devices are provided. The methods may include forming a fast etching region comprising phosphorous in an active region and forming a first trench in the active region by recessing the fast etching region. The methods may also include forming a second trench in the active region by enlarging the first trench using a directional etch process and forming a stressor in the second trench. The second trench may include a notched portion of the active region.
摘要:
A duty cycle corrector includes a duty adjusting unit configured to adjust a duty cycle of an input clock in response to a duty correction code and generate an output clock, a duty detecting unit configured to measure a difference between a high pulse width and a low pulse width of the output clock and output a difference value, and an accumulating unit configured to accumulate the difference value to generate the duty correction code.
摘要:
A semiconductor device includes a first multi-channel active pattern defined by a field insulating layer and extending along a first direction, the first multi-channel active pattern including a first portion having a top surface protruding further in an upward direction than a top surface of the field insulating layer and a second portion on both sides of the first portion, the second portion having sidewalls with a continuous profile and a top surface protruding further in the upward direction than the top surface of the field insulating layer and protruding in the upward direction less than the top surface of the first portion, a gate electrode on the first portion of the first multi-channel active pattern and extending along a second direction different from the first direction, and a first source/drain region on the second portion of the first multi-channel active pattern and contacting the field insulating layer.
摘要:
A delay locked loop (DLL) of a semiconductor integrated circuit includes a first delay line configured to variably delay a source clock signal and output a locked clock signal, a phase comparator configured to compare the phase of the source clock signal with the phase of a feedback clock signal, a second delay line configured to variably delay the locked clock signal, a first delay controller configured to control the first delay time of the first delay line, a second delay controller configured to control the minimum delay time of the second delay line, and an operation mode controller configured to control the first and second delay controllers in response to an output signal of the phase comparator, and switch operation modes of the first and second delay controllers depending on locking state of the delay lines.