Abstract:
A powertrain system is provided that includes a first prime mover and change-gear transmission having a first input shaft and a second input shaft. A twin clutch is disposed between the first prime mover and the transmission. The twin clutch includes a first main clutch positioned between the first prime mover and the first input shaft and a second main clutch positioned between the first prime mover and the second input shaft. The powertrain system also includes a second prime mover operably connected to one of the first and second input shafts.
Abstract:
An integrated motor and clutch assembly is provided, which includes a housing that rotatably supports an input shaft and an output shaft. A selectively engageable friction clutch is disposed between the input shaft and the output shaft for transferring torque therebetween. The friction clutch includes an outer hub connected for rotation with the output shaft. The integrated motor and clutch assembly also includes a motor having a rotor non-rotatably connected to the outer hub of the friction clutch and disposed coaxial with the input and output shafts. The motor also includes a stator secured to the housing and disposed concentric with the rotor.
Abstract:
A control system/method for a controller-assisted, manually shifted transmission system (10) senses incomplete jaw clutch engagement (FIGS. 7A and 7B) and causes the engine to dither about zero driveline torque to allow the vehicle operator to fully engage (FIG. 7C) the engaging jaw clutch (200).
Abstract:
A method of operating a hybrid powertrain system is provided for a vehicle that includes an internal combustion engine having an engine output to drive the vehicle and a motor having a motor output to drive the vehicle. The motor is operatively connected to the engine and operable to crank the engine. The method includes the steps of reducing compression in at least one engine cylinder and operating the motor to crank the engine. A hybrid powertrain system for a hybrid vehicle is also provided.
Abstract:
A method of operating a hybrid powertrain system is provided for a vehicle that includes an internal combustion engine having an engine output to drive the vehicle and a motor having a motor output to drive the vehicle. The motor is operatively connected to the engine and operable to crank the engine. The method includes the steps of reducing compression in at least one engine cylinder and operating the motor to crank the engine. A hybrid powertrain system for a hybrid vehicle is also provided.
Abstract:
A controller-assisted, manually shifted compound transmission system (10) and splitter shift control method therefor. Auxiliary splitter section (16B) shifts are automatically implemented by a splitter shifter (28) under commands (56) from a controller (54). The splitter ratio to be engaged is determined as a function of a target engine speed (EST) under sensed and expected vehicle operating conditions.
Abstract:
A method is provided for shutting down an internal combustion engine in a hybrid vehicle that includes a motor and a generator operatively connected to an engine crankshaft. The method includes the steps of reducing compression in at least one engine cylinder and operating the motor or generator to influence motion of the engine crankshaft during engine shutdown to attenuate oscillations in and expedite reduction of engine crankshaft speed. A system for shutting down a hybrid vehicle internal combustion engine is also provided.
Abstract:
A method of operating a hybrid powertrain system is provided for a vehicle that includes an internal combustion engine having an engine output to drive the vehicle and a motor having a motor output to drive the vehicle. The motor is operatively connected to the engine and operable to crank the engine. The method includes the steps of reducing compression in at least one engine cylinder and operating the motor to crank the engine. A hybrid powertrain system for a hybrid vehicle is also provided.
Abstract:
A control system/method for a controller-assisted, manually shifted transmission system (10). Upon sensing an intent to initiate a lever shift (ITS), the target gear ratio (GRT) is assumed to be a single shift from the currently engaged ratio (GRT=GRC±1) until a delay period of time (TDELAY) expires. After the delay period (T>TDELAY), the target ratio is determined as a function of shift lever position (SL) and/or fore/aft force (FF/FA) on the shift lever (48).
Abstract translation:一种用于控制器辅助的手动变速传动系统(10)的控制系统/方法。 在感测到启动杠杆换档(ITS)的意图时,假设目标齿轮比(GR T SMALLCAPS>)是从当前啮合的比率(GR T SMALLCAPS> = GR C SMALLCAPS>±1),直到延迟时间段(TDELAY)过期。 在延迟时段(T> TDELAY)之后,目标比例被确定为变速杆位置(SL)和/或变速杆(48)上的前/后力(FF / FA)的函数。
Abstract:
A controller-assisted, manually shifted transmission system having a control system and method for controlling automatic range shifts are disclosed. Automatic range shifts are determined by control logic utilizing predetermined logic rules to evaluate transmission system criteria. The control logic determines a set of potential target gear ratios. Engine overspeed tests evaluate the set of potential target gear ratios in combination with the transmission system criteria. The appropriate range shift is determined and executed based on the selected target gear ratio.