Abstract:
A liquid polycarbonate coating composition including an aliphatic polycarbonate resin and a cross linking compound, said aliphatic polycarbonate resin being derived from, in the presence of a catalyst, an aliphatic polyol which comprises (a) from 50 to 100% by weight of the aliphatic polyol, one or more cycloaliphatic polyols that consist essentially of primary hydroxyl groups and (b) from 0 to 50% by weight of the aliphatic polyol, one or more linear aliphatic polyols, is provided. A method of coating a substrate with the liquid polycarbonate coating composition and the resulting articles are also provided.
Abstract:
The present invention provides bi-component core-shell polymeric microfibers for reinforcing concrete comprising as a first component (shell) ethylene-vinyl alcohol (EVOH) polymer and at least one plasticizer, preferably, polyethylene glycol, and as a second component (core) a polymer chosen from a polyamide, a polyester, such as polyethylene terephthalate, and a polymer blend of a polyolefin and an anhydride grafted polyolefin and having an aspect ratio of length to diameter (L/D) or equivalent diameter of from 300 to 1000. The bi-component polymeric microfibers comprise from 5 to 45 wt. % of the first component, are easily processed, and provide fiber cements having improved mechanical properties at relatively low microfiber loadings.
Abstract:
A liquid polycarbonate coating composition including an aliphatic polycarbonate resin and a cross linking compound, said aliphatic polycarbonate resin being derived from, in the presence of a catalyst, an aliphatic polyol which comprises (a) from 50 to 100% by weight of the aliphatic polyol, one or more cycloaliphatic polyols that consist essentially of primary hydroxyl groups and (b) from 0 to 50% by weight of the aliphatic polyol, one or more linear aliphatic polyols, is provided. A method of coating a substrate with the liquid polycarbonate coating composition and the resulting articles are also provided.
Abstract:
Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1×1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.
Abstract:
Prepare a thermoplastic polymer foam having a porosity of 70% or more and at least one of: (i) an average cell size of 200 nanometers or less; and (ii) a nucleation density of at least 1×1015 effective nucleation sites per cubic centimeter of foamable polymer composition not including blowing agent using a foamable polymer composition containing a thermoplastic polymer selected from styrenic polymer and (meth)acrylic polymers, a blowing agent comprising at least 20 mole-percent carbon dioxide based on moles of blowing agent and an additive having a Total Hansen Solubility Parameter that differs from that of carbon dioxide by less than 2 and that is present at a concentration of 0.01 to 1.5 weight parts per hundred weight parts thermoplastic polymer.