Abstract:
Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadienyl-based (Cp-based) moiety. Also provided is a chromium catalyst comprising or prepared from the complex. Also provided is a process of making the catalyst and a process employing the chromium catalyst for polymerizing the olefin monomer, especially a straight chain 1-alkene, to prepare the polyolefin, especially a partially chain-straightened poly(1-alkene) or olefin block copolymer. Further provided is the partially chain-straightened poly(1-alkene) or olefin block copolymer prepared thereby. Also provided is a high throughput workflow.
Abstract:
The present invention relates to compositions and processes of making ethylene/α-olefins. More particularly, the invention relates to processes of producing ethylene/α-olefin compositions having a controlled molecular weight distribution. The molecular weight distribution is controlled, for example, by controlling the relative monomer concentrations during contact with a pre-catalyst and/or using a catalyst comprising a catalytic amount of a molecule having the structure: wherein M=group 2-8 metal, preferably group 4 as a neutral or charged moiety; Y=any substituent including fused rings; L=any ligating group, especially a pyridyl or pyridylamide; X=alkyl, aryl, substituted alkyl, H or hydride, halide, or other anionic moiety; y=an integer from 0 to the complete valence of M; R=alkyl, aryl, haloalkyl, haloaryl, hydrogen, etc; x=1-6, especially 2; Dashed line=optional bond, especially a weak bond; and X and (CR2)x may be tethered or part of a ring.
Abstract translation:本发明涉及制备乙烯/α-烯烃的组合物和方法。 更具体地说,本发明涉及生产具有受控分子量分布的乙烯/α-烯烃组合物的方法。 分子量分布例如通过控制与预催化剂接触期间的相对单体浓度和/或使用包含催化量的具有以下结构的分子的催化剂进行控制:其中M = 2-8金属,优选 组4作为中性或带电部分; Y =任何取代基,包括稠环; L =任何连接基团,特别是吡啶基或吡啶基酰胺; X =烷基,芳基,取代的烷基,H或氢化物,卤化物或其它阴离子部分; y =从0到完全化合价的整数; R =烷基,芳基,卤代烷基,卤代芳基,氢等; x = 1-6,特别是2; 虚线=可选债券,特别是弱债券; X和(CR2)x可以是连接的或环的一部分。
Abstract:
The present invention relates to compositions and processes of making ethylene/α-olefins. More particularly, the invention relates to processes of producing ethylene/α-olefin compositions having a controlled molecular weight distribution. The molecular weight distribution is controlled, for example, by controlling the relative monomer concentrations during contact with a pre-catalyst and/or using a catalyst comprising a catalytic amount of a molecule having the structure: wherein M=group 2-8 metal, preferably group 4 as a neutral or charged moiety; Y=any substituent including fused rings; L=any ligating group, especially a pyridyl or pyridylamide; X=alkyl, aryl, substituted alkyl, H or hydride, halide, or other anionic moiety; y=an integer from 0 to the complete valence of M; R=alkyl, aryl, haloalkyl, haloaryl, hydrogen, etc; x=1-6, especially 2; Dashed line=optional bond, especially a weak bond; and X and (CR2)x may be tethered or part of a ring.
Abstract translation:本发明涉及制备乙烯/α-烯烃的组合物和方法。 更具体地说,本发明涉及生产具有受控分子量分布的乙烯/α-烯烃组合物的方法。 分子量分布例如通过控制与预催化剂接触期间的相对单体浓度和/或使用包含催化量的具有以下结构的分子的催化剂进行控制:其中M = 2-8金属,优选 组4作为中性或带电部分; Y =任何取代基,包括稠环; L =任何连接基团,特别是吡啶基或吡啶基酰胺; X =烷基,芳基,取代的烷基,H或氢化物,卤化物或其它阴离子部分; y =从0到完全化合价的整数; R =烷基,芳基,卤代烷基,卤代芳基,氢等; x = 1-6,特别是2; 虚线=可选债券,特别是弱债券; X和(CR2)x可以是连接的或环的一部分。
Abstract:
Provided is a non-cyclopentadienyl-based chromium-ligand complex, preferably a chromium-ligand complex of formula (J): LCr(RA)m(D)k (J), wherein L is a non-Cp monoanionic ligand; Cr (chromium) is in a formal oxidation state of +3 or +2; when Cr formally is Cr+3, either m is 1 and RA is hydrocarbylene (a hydrocarbylene chromium-ligand complex of formula (J)) or m is 2 and each RA independently is hydrocarbyl (a dihydrocarbyl chromium-ligand complex of formula (J)), wherein each hydrocarbyl or hydrocarbylene of RA independently is unsubstituted or substituted by from 1 to 5 RAS; each RAS independently is a neutral aprotic heteroalkyl, neutral aprotic heterocycloalkyl, neutral aprotic heteroaryl, or neutral aprotic aryl; when Cr formally is Cr+2, m is 1 and RA is hydrocarbyl (a hydrocarbyl chromium-ligand complex of formula (J)); k is an integer of 0 or 1; D is absent when k is 0 or D is a neutral ligand when k is 1; wherein the chromium-ligand complex of formula (J) is overall neutral and lacks a cyclopentadienyl-based (Cp-based) moiety. Also provided is a chromium catalyst comprising or prepared from the complex. Also provided is a process of making the catalyst and a process employing the chromium catalyst for polymerizing the olefin monomer, especially a straight chain 1-alkene, to prepare the polyolefin, especially a partially chain-straightened poly(1-alkene) or olefin block copolymer. Further provided is the partially chain-straightened poly(1-alkene) or olefin block copolymer prepared thereby. Also provided is a high throughput workflow.
Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
The present disclosure relates to a catalyst system for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first olefin polymerization procatalyst, (B) a second olefin polymerization procatalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by procatalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.
Abstract:
A composition for use in forming a multi-block copolymer, said copolymer containing therein two or more segments or blocks differing in chemical or physical properties, a polymerization process using the same, and the resulting polymers, wherein the composition comprises the admixture or reaction product resulting from combining: (A) a first metal complex olefin polymerization catalyst, (B) a second metal complex olefin polymerization catalyst capable of preparing polymers differing in chemical or physical properties from the polymer prepared by catalyst (A) under equivalent polymerization conditions, and (C) a chain shuttling agent.