Abstract:
A positive displacement pump assembly includes a rotor housing defining a rotor cavity, and an end plate configured to at least partially close one end of the rotor cavity. Rotors are supported on and fixed to rotor shafts and extend through the rotor cavity. A first pair of bearings fixing the rotor shafts to the end plate. A second pair of bearings fixes the rotor shafts to the rotor housing, preventing relative axial movement between the rotor shafts and the rotor housing. The end plate is axially movable with the rotor shafts when the rotor shafts vary in axial length due to thermal fluctuations so that changes in an axial clearance at end faces of the rotors are reduced.
Abstract:
A rotational element coupling device in a supercharger includes a rotatable output shaft having tapered external splines and an output shaft axis of rotation. A coupling disk has a disk axis of rotation coaxial with the output shaft axis of rotation, a tapered internally splined bore coaxial with the disk axis of rotation to engage the tapered external splines, and a plurality of apertures defined in the coupling disk parallel to the disk axis of rotation. A plurality of pins each have a disk end and a timing gear end distal to the disk end. The plurality of pins matingly engages with the coupling disk at the disk end of the pins via the plurality of apertures. A timing gear is fixed to a supercharger rotor for rotation therewith. The timing gear has a plurality of apertures disposed therein to matingly engage with the timing gear end of the plurality of pins.
Abstract:
A positive displacement pump assembly includes a rotor housing defining a rotor cavity, and an end plate configured to at least partially close one end of the rotor cavity. Rotors are supported on and fixed to rotor shafts and extend through the rotor cavity. A first pair of bearings fixing the rotor shafts to the end plate. A second pair of bearings fixes the rotor shafts to the rotor housing, preventing relative axial movement between the rotor shafts and the rotor housing. The end plate is axially movable with the rotor shafts when the rotor shafts vary in axial length due to thermal fluctuations so that changes in an axial clearance at end faces of the rotors are reduced.
Abstract:
A supercharger includes a supercharger housing, a primary rotor having a primary rotor shaft fixed to rotate therewith. A ring gear with internal teeth is attached to a transmission housing portion of the supercharger housing. A sun gear is fixed to the primary rotor shaft. A planetary gear carrier has a plurality of planetary gear shafts. A plurality of planetary gears rotate about corresponding planetary gear shafts and are meshingly engaged with the sun gear and the ring gear and are substantially equally spaced about the sun gear. A rotatable input shaft is connectable to the planetary gear carrier. The input shaft is connectable to receive rotational motion and power from an engine.
Abstract:
The present invention relates to compression based engine boosting systems, and, more particularly, to a supercharger configuration for higher pressure applications.
Abstract:
A rotational element coupling device in a supercharger includes a rotatable output shaft having tapered external splines and an output shaft axis of rotation. A coupling disk has a disk axis of rotation coaxial with the output shaft axis of rotation, a tapered internally splined bore coaxial with the disk axis of rotation to engage the tapered external splines, and a plurality of apertures defined in the coupling disk parallel to the disk axis of rotation. A plurality of pins each have a disk end and a timing gear end distal to the disk end. The plurality of pins matingly engages with the coupling disk at the disk end of the pins via the plurality of apertures. A timing gear is fixed to a supercharger rotor for rotation therewith. The timing gear has a plurality of apertures disposed therein to matingly engage with the timing gear end of the plurality of pins.
Abstract:
A supercharger includes a rotor housing defining a pair of cylindrical chambers. A driving shaft bearing is to support a driving rotor shaft for rotation in the rotor housing. A driven shaft bearing is to support a driven rotor shaft for rotation in the rotor housing. An oil sump housing is to enclose a timing gear end of the rotor housing. A shaft seal is disposed between the rotor housing and each respective rotor shaft. The oil sump housing, the rotor housing and driving and driven shaft seals define a closed container for oil to lubricate the driving shaft bearing, the driven shaft bearing, a driving timing gear and a driven timing gear. The oil pools in the closed container and a top surface of the oil is spaced below the timing gears when the driving rotor shaft is in a vertical orientation.
Abstract:
A supercharger includes a rotor housing defining a pair of cylindrical chambers. A driving shaft bearing is to support a driving rotor shaft for rotation in the rotor housing. A driven shaft bearing is to support a driven rotor shaft for rotation in the rotor housing. An oil sump housing is to enclose a timing gear end of the rotor housing. A shaft seal is disposed between the rotor housing and each respective rotor shaft. The oil sump housing, the rotor housing and driving and driven shaft seals define a closed container for oil to lubricate the driving shaft bearing, the driven shaft bearing, a driving timing gear and a driven timing gear. The oil pools in the closed container and a top surface of the oil is spaced below the timing gears when the driving rotor shaft is in a vertical orientation.
Abstract:
The present disclosure relates to a boost system that provides boost pressure to an air intake manifold of an engine. The boost system includes a turbocharger and a supercharger that cooperate to provide the pressure boost to the air intake manifold. The boost system also includes a hybrid drive system for powering the supercharger.
Abstract:
A supercharger includes a supercharger housing, a primary rotor having a primary rotor shaft fixed to rotate therewith. A ring gear with internal teeth is attached to a transmission housing portion of the supercharger housing. A sun gear is fixed to the primary rotor shaft. A planetary gear carrier has a plurality of planetary gear shafts. A plurality of planetary gears rotate about corresponding planetary gear shafts and are meshingly engaged with the sun gear and the ring gear and are substantially equally spaced about the sun gear. A rotatable input shaft is connectable to the planetary gear carrier. The input shaft is connectable to receive rotational motion and power from an engine.