Abstract:
Disclosed are a photo-acoustic sensor device and a photo-acoustic sensing method of the same. The sensing method includes providing a source light in a subject and receiving an ultrasonic wave generated in the subject by the source light. The source light may have a wavelength of 1400 nm to 2500 nm in a near-infrared band.
Abstract:
Disclosed are a noninvasive blood glucose measurement apparatus and method using multiple sensors. The noninvasive blood glucose measurement apparatus includes: a first light source unit configured to irradiate light to the biological tissue, a second light source unit configured to irradiate light to the biological tissue, a first receiving unit configured to receive a photoacoustic and/or light transmission signal generated by the light, a second receiving unit configured to receive a light reflection signal reflected by the biological tissue, and a measurement unit configured to measure light reflection characteristics of the biological tissue by using the light reflection signal, measure photoacoustic and/or light transmission characteristics of the biological tissue, and measure blood glucose of the biological tissue on the basis of the light reflection characteristics and the photoacoustic and/or light transmission characteristics.
Abstract:
A laser emitter module may include a first laser emitter configured to output first laser beam having a first radiation angle by receiving first input laser beam and a second laser emitter configured to output second laser beam having a radiation angle different from the first radiation angle by receiving second input laser beam having a width different from that of the first input laser beam. The first and second laser emitters output the first and second laser beam together.
Abstract:
Provided is an optical probe. The optical probe includes an optical input/output unit, a rotation part spaced apart from the optical input/output unit in a first direction and including a reflection surface, and a transparent electrode provided around the reflection surface.
Abstract:
According to the present invention, an optical differential interrogation method for surface plasmon resonance imaging including: letting first incident light of a first wavelength and second incident light of a second wavelength to be incident on a sample while varying an incident angle; detecting intensity of first reflection light of the first incident light and intensity of second reflection light of the second incident light; and identifying the sample by using a difference between the intensity of the first reflection light and the intensity of the second reflection light, can be provided, and thus it is possible to obtain much better angular resolution while using a detector or a camera, which has a relative low receiving sensitivity and a sensor chip where samples having various characteristics are two-dimensionally arrayed and integrated can be effectively measured.
Abstract:
A vehicle window visible ray transmittance remote sensing system emits a plurality of laser beams to a driving vehicle, estimates transmittance of a window of the vehicle by acquiring a plurality of point data of a plurality of points from which a plurality of laser beams are reflected from a surface of the vehicle, and distinguishes a vehicle that deviates from a transmittance reference based on the estimated window transmittance.