Abstract:
An apparatus and method for generating an electrical circuit of semiconductor channel resistor including a first passive element part including a resistor and a capacitor connected in parallel between a first port and a second port, and an ohmic resistor connected in series to the resistor and the capacitor which are connected in parallel are provided. The apparatus includes a substrate selection part configured to receive a selected substrate item; a resistor selection part configured to receive a selected resistor item; a capacitor selection part configured to receive a selected capacitor item; and a circuit generating part configured to generate an electrical circuit from the selected substrate item, the selected resistor item, and the selected capacitor item.
Abstract:
The present invention improves a heat dissipation property of a semiconductor device by transferring hexagonal boron nitride (hBN) with a two-dimensional nanostructure to the semiconductor device. A semiconductor device of the present invention includes a substrate having a first surface and a second surface, a semiconductor layer formed on the first surface of the substrate, an hBN layer formed on at least one surface of the first surface and the second surface of the substrate, and a heat sink positioned on the second surface of the substrate. A radiation rate of heat generated during driving of an element is increased to decrease a reduction in lifetime of a semiconductor device due to a temperature increase. The semiconductor device has a structure and configuration which are very effective in improving a rapid temperature increase due to heat generated by high-power semiconductor devices.
Abstract:
A method of manufacturing a high-electron-mobility transistor device is provided. The method includes sequentially forming a transition layer and a semiconductor layer on a substrate, etching a portion of a surface of the semiconductor layer to form a barrier layer region having a certain depth and forming a barrier layer in the barrier layer region, forming a source electrode and a drain electrode on a 2-dimensional electron gas (2-DEG) layer upward exposed at a surface of the semiconductor layer, in defining the 2-DEG layer formed along an interface between the semiconductor layer and the barrier layer, forming a passivation layer on the semiconductor layer, the barrier layer, the source electrode, and the drain electrode and etching a portion of the passivation layer to upward expose the source electrode, the drain electrode, and the barrier layer, and forming a gate electrode on the upward exposed barrier layer.
Abstract:
A tunable filter device that changes a central frequency and a bandwidth is provided. The tunable filter device may include a body forming a cavity together with a cover, a resonator attached to or integrally formed on a lower surface of the cavity, a frequency-tuning element including a head and a shaft, the shaft passed through the cover and inserted in the resonator, and a cam disposed on the head to contact the head, wherein an insertion length of the shaft is controlled by the cam.
Abstract:
A transmit/receive module for radar may include a radio frequency (RF) circuit unit including an RF substrate and an RF part; and a direct current (DC) power supply circuit unit including a printed circuit board (PCB) and a DC power supply circuit part. The RF circuit unit and the DC power supply circuit unit may be disposed so that a rear surface of the RF circuit unit faces a rear surface of the DC power supply circuit unit, and may be assembled to have a separate space using at least one separation wall.
Abstract:
Provided is a compact waveguide termination including: a waveguide, a termination coupled with the waveguide and formed with a groove, and a thin film resistor part coupled with the groove and configured to attenuate an input signal at a central region of the waveguide, thereby improving frequency performance.