摘要:
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
摘要:
Disclosed are a GaN (gallium nitride) compound power semiconductor device and a manufacturing method thereof. The gallium nitride compound power semiconductor device includes: a gallium nitride compound element formed by being grown on a wafer; a contact pad including a source, a drain, and a gate connecting with the gallium nitride compound element; a module substrate to which the nitride gallium compound element is flip-chip bonded; a bonding pad formed on the module substrate; and a bump formed on the bonding pad of the module substrate so that the contact pad and the bonding pad are flip-chip bonded. By this configuration, it is possible to reduce the process costs by forming the bump on the substrate based on the wafer level, rapidly emit the heat generated from an AlGaN HEMT device by forming the sub source contact pad and the sub drain contact pad of the substrate in the active region, and efficiently emit the heat generated from the AlGaN HEMT device by forming a via hole on the substrate and filling the via hole with the conductive metal.
摘要:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
摘要:
The present disclosure relates to a nitride electronic device and a method for manufacturing the same, and particularly, to a nitride electronic device and a method for manufacturing the same that can implement various types of nitride integrated structures on the same substrate through a regrowth technology (epitaxially lateral over-growth: ELOG) of a semi-insulating gallium nitride (GaN) layer used in a III-nitride semiconductor electronic device including Group III elements such as gallium (Ga), aluminum (Al) and indium (In) and nitrogen.
摘要:
A semiconductor package is provided. The semiconductor package includes a package body, a plurality of semiconductor chips, and an external connection terminal. The package body is stacked with a plurality of sheets where conductive patterns and vias are disposed. The plurality of semiconductor chips are inserted into insert slots extending from one surface of the package body. The external connection terminal is provided on other surface opposite to the one surface of the package body. Here, the plurality of semiconductor chips are electrically connected to the external connection terminal.
摘要:
The present invention improves a heat dissipation property of a semiconductor device by transferring hexagonal boron nitride (hBN) with a two-dimensional nanostructure to the semiconductor device. A semiconductor device of the present invention includes a substrate having a first surface and a second surface, a semiconductor layer formed on the first surface of the substrate, an hBN layer formed on at least one surface of the first surface and the second surface of the substrate, and a heat sink positioned on the second surface of the substrate. A radiation rate of heat generated during driving of an element is increased to decrease a reduction in lifetime of a semiconductor device due to a temperature increase. The semiconductor device has a structure and configuration which are very effective in improving a rapid temperature increase due to heat generated by high-power semiconductor devices.
摘要:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
摘要:
The present invention relates to a GaN transistor, and a method of fabricating the same, in which a structure of a bonding pad is improved by forming an ohmic metal layer at edges of the bonding pad of a source, a drain, and a gate so as to be appropriate to wire-bonding or a back-side via-hole forming process. Accordingly, adhesive force between a metal layer of the bonding pad and a GaN substrate is enhanced by forming the ohmic metal at the edges of the bonding pad during manufacturing of the GaN transistor, thereby minimizing a separation phenomenon of a pad layer during the wire-bonding or back-side via-hole forming process, and improving reliability of a device.
摘要:
A field effect transistor includes an active layer and a capping layer sequentially stacked on a substrate, and a gate electrode penetrating the capping layer and being adjacent to the active layer. The gate electrode includes a foot portion adjacent to the active layer and a head portion having a width greater than a width of the foot portion. The foot portion of an end part of the gate electrode has a width less than a width of the head portion of another part of the gate electrode and greater than a width of the foot portion of the another part of the gate electrode. The foot portion of the end part of the gate electrode further penetrates the active layer so as to be adjacent to the substrate.
摘要:
A field effect transistor includes an active layer and a capping layer sequentially stacked on a substrate, and a gate electrode penetrating the capping layer and being adjacent to the active layer. The gate electrode includes a foot portion adjacent to the active layer and a head portion having a width greater than a width of the foot portion. The foot portion of an end part of the gate electrode has a width less than a width of the head portion of another part of the gate electrode and greater than a width of the foot portion of the another part of the gate electrode. The foot portion of the end part of the gate electrode further penetrates the active layer so as to be adjacent to the substrate.