Abstract:
A method of manufacturing a high-electron-mobility transistor device is provided. The method includes sequentially forming a transition layer and a semiconductor layer on a substrate, etching a portion of a surface of the semiconductor layer to form a barrier layer region having a certain depth and forming a barrier layer in the barrier layer region, forming a source electrode and a drain electrode on a 2-dimensional electron gas (2-DEG) layer upward exposed at a surface of the semiconductor layer, in defining the 2-DEG layer formed along an interface between the semiconductor layer and the barrier layer, forming a passivation layer on the semiconductor layer, the barrier layer, the source electrode, and the drain electrode and etching a portion of the passivation layer to upward expose the source electrode, the drain electrode, and the barrier layer, and forming a gate electrode on the upward exposed barrier layer.
Abstract:
Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
Abstract:
A high electron mobility transistor includes a substrate including a first surface and a second surface facing each other and having a via hole passing through the first surface and the second surface, an active layer on the first surface, a cap layer on the active layer and including a gate recess region exposing a portion of the active layer, a source electrode and a drain electrode on one of the cap layer and the active layer, an insulating layer on the source electrode and the drain electrode and having on opening corresponding to the gate recess region to expose the gate recess region, a first field electrode on the insulating layer, a gate electrode electrically connected to the first field electrode on the insulating layer, and a second field electrode on the second surface and contacting the active layer through the via hole.
Abstract:
Provided herein is a feedback amplifier including an amplifier circuit configured to amplify an input signal input from an input terminal and output the amplified input signal to an output terminal; a feedback circuit configured to apply a feedback resistance value to a signal output to the output terminal, and to control a gain of the amplifier circuit by adjusting the input signal by a bias voltage applied with a feedback resistance value determined; a packet signal sensor configured to generate a fixed resistance control signal for controlling a fixed resistance value included in the feedback resistance value through a comparison between the output from the output terminal with a minimum signal level; and a fixed resistance controller configured to control the fixed resistance value included in the feedback resistance value in response to the fixed resistance control signal.
Abstract:
Disclosed are a semiconductor device having a stable gate structure, and a manufacturing method thereof, in which a gate structure is stabilized by additionally including a plurality of gate feet under a gate head in a width direction of the gate head so as to serve as supporters in a gate structure including a fine gate foot having a length of 0.2 μm or smaller, and the gate head having a predetermined size. Accordingly, it is possible to prevent the gate electrode of the semiconductor device from collapsing, and improve reliability of the semiconductor device during or after the process of the semiconductor device.
Abstract:
Disclosed are a GaN (gallium nitride) compound power semiconductor device and a manufacturing method thereof. The gallium nitride compound power semiconductor device includes: a gallium nitride compound element formed by being grown on a wafer; a contact pad including a source, a drain, and a gate connecting with the gallium nitride compound element; a module substrate to which the nitride gallium compound element is flip-chip bonded; a bonding pad formed on the module substrate; and a bump formed on the bonding pad of the module substrate so that the contact pad and the bonding pad are flip-chip bonded. By this configuration, it is possible to reduce the process costs by forming the bump on the substrate based on the wafer level, rapidly emit the heat generated from an AlGaN HEMT device by forming the sub source contact pad and the sub drain contact pad of the substrate in the active region, and efficiently emit the heat generated from the AlGaN HEMT device by forming a via hole on the substrate and filling the via hole with the conductive metal.
Abstract:
Provided herein is a semiconductor device including a substrate; an active layer formed on top of the substrate; a protective layer formed on top of the active layer and having a first aperture; a source electrode, driving gate electrode and drain electrode formed on top of the protective layer; and a first additional gate electrode formed on top of the first aperture, wherein an electric field is applied to the active layer, protective layer and driving gate electrode due to a voltage applied to each of the source electrode, drain electrode and driving gate electrode, and the first additional gate electrode is configured to attenuate a size of the electric field applied to at least a portion of the active layer, protective layer and driving gate electrode.
Abstract:
The present invention improves a heat dissipation property of a semiconductor device by transferring hexagonal boron nitride (hBN) with a two-dimensional nanostructure to the semiconductor device. A semiconductor device of the present invention includes a substrate having a first surface and a second surface, a semiconductor layer formed on the first surface of the substrate, an hBN layer formed on at least one surface of the first surface and the second surface of the substrate, and a heat sink positioned on the second surface of the substrate. A radiation rate of heat generated during driving of an element is increased to decrease a reduction in lifetime of a semiconductor device due to a temperature increase. The semiconductor device has a structure and configuration which are very effective in improving a rapid temperature increase due to heat generated by high-power semiconductor devices.
Abstract:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
Abstract:
Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.