Abstract:
An improved mobile/cellular/wireless communication method e.g. for use-cases in which portions (“important signal” or “needed signal”) of a signal (“original signal”) are of particular interest in a given situation but not adequately received in that situation, the method comprising generating an auxiliary signal operative e.g. to bridge between imperfect ability/ies of the transmitters in the situation, and specific needs of the receivers in the situation, and/or to improve reception of the important signal and/or important signal information; and transmitting at least the auxiliary signal to the receiving end such that a representation of characteristics of the important signal, comprising the important signal itself and/or important signal information characterizing the important signal, is replaced enhanced or augmented by the auxiliary signal, at the receiving end.
Abstract:
A hierarchical cellular network system having a core and comprising a plurality of nodes, wherein at least one node comprises a relay; and wherein at least one relay includes: a tunneling sub-system; a backhauling link subsystem interfacing between the tunneling subsystem and a node which is closer to the core than the relay; and a base station subsystem, interfacing between the tunneling subsystem and a mobile station or a node which is further from the core than the relay, wherein the tunneling subsystem is operative to perform the following, on data arriving from a base station subsystem belonging to another node from among the plurality of nodes: collecting the data; and encapsulating the results to be sent in an individual session into packets and sending the packets to the Backhauling Link Subsystem.
Abstract:
System for ex post facto upgrading of at least one Legacy personal communication device including a legacy modem and lacking at least one desired wireless communication feature, the system comprising an upgraded communication device including an auxiliary modem physically connected via an ex post facto physical connection to a Legacy personal communication device having at least one legacy wireless output channel which has been neutralized or disabled.
Abstract:
A cellular communication system comprising a population of cellular communication network nodes comprising a stationary core, a plurality of base stations, and at least one node having mobile station functionality; and a client tunneling functionality co-located with the node having mobile station functionality which is operative to use network topology information obtained via the mobile station functionality to initiate generation of a tunnel having a first end at the node and a second far end at the stationary core.
Abstract:
A hierarchical cellular network system having a core and comprising a plurality of nodes, wherein at least one node comprises a relay; and wherein at least one relay includes: a tunneling sub-system; a backhauling link subsystem interfacing between the tunneling subsystem and a node which is closer to the core than the relay; and a base station subsystem, interfacing between the tunneling subsystem and a mobile station or a node which is further from the core than the relay, wherein the tunneling subsystem is operative to perform the following, on data arriving from a base station subsystem belonging to another node from among the plurality of nodes: collecting the data; and encapsulating the results to be sent in an individual session into packets and sending the packets to the Backhauling Link Subsystem.
Abstract:
A cellular communication system comprising a population of cellular communication network nodes comprising a stationary core, a plurality of base stations, and at least one node having mobile station functionality; and a client tunneling functionality co-located with the node having mobile station functionality which is operative to use network topology information obtained via the mobile station functionality to initiate generation of a tunnel having a first end at the node and a second far end at the stationary core.
Abstract:
A cellular communication system comprising a population of cellular communication network nodes comprising a stationary core, a plurality of base stations, and at least one node having mobile station functionality; and a client tunneling functionality co-located with the node having mobile station functionality which is operative to use network topology information obtained via the mobile station functionality to initiate generation of a tunnel having a first end at the node and a second far end at the stationary core.
Abstract:
In a mobile communication system including a network having at least one base station operative to receive information in resource allocation terminology understandable to the base station and to allocate downlink bandwidth accordingly, at least one relay operative to convey to the base station information regarding needs of mobile communicators associated with the relay, using the resource allocation terminology understandable to the base station, and when receiving uplink bandwidth, from the base station, which generates an uplink between itself and the base station, to distribute the uplink bandwidth between the mobile communicators associated with the relay.
Abstract:
A method operative in conjunction with a cellular communication network having a core element and comprising providing moving relays including base and mobile station functionality and a relay resource manager, all co-located, including providing an emergency moving relay from among the moving relays further including a simulated stationary network that includes a simulated IP connectivity gateway communicating with a simulated mobility management entity. The simulated stationary network simulates a stationary network's operation; the emergency moving relay being a root of a sub tree that includes moving relays and mobile stations, and is configured to utilize its mobile and base station functionalities and relay resource manager for operating in:(i) normal mode: emergency moving relay communicates with other relays in the network and with the stationary network;(ii) emergency mode, including, in response to an emergency event, finding new networks to connect to.
Abstract:
A hierarchical cellular network administration system operative to administrate for a hierarchical cellular network having a core, the hierarchical cellular network administration system comprising a link establishment initiator operative to generate link establishment commands; and relay manager functionality operative to establish at least one link between at least one relay in the hierarchical cellular network and all nodes in said cellular network desired to be served by said at least one relay, as per said link establishment commands generated by the link establishment initiator; and to control operation of links thus established.