Abstract:
The invention relates to an item comprising a substrate having at least one main surface coated with a multilayer interferential coating comprising at least one layer with a refractive index higher than 1.65 and at least one layer with a refractive index lower than, or equal to, 1.65, at least one of the layers of the interferential coating being an organic-inorganic layer that has been deposited in a vacuum environment and has a thickness of at least 30 nm, said interferential coating having a thickness of at least 450 nm and/or at least 8 layers.
Abstract:
The invention relates to an optical article provided with antireflection properties, comprising a substrate having at least one main surface coated with an antireflection coating comprising, starting from the substrate: a sub-layer comprising two adjacent layers formed from the same material, the sum of the thicknesses of the two adjacent layers being greater than or equal to 75 nm; and a multilayered antireflection stack comprising at least one high refractive index layer and at least one low refractive index layer, the deposition of the first of said two adjacent layers of the sub-layer having been carried out without ion assistance and the deposition of the second of said two adjacent layers of the sub-layer having been carried out under ion assistance. The invention also relates to a process for manufacturing such an optical article.
Abstract:
The invention relates to an item comprising a substrate having at least one first main surface coated with an organic-inorganic layer of a material obtained by vacuum deposition of at least one metal oxide B, preferably having a refraction index no higher than 1.53, and at least one organic compound, said layer having a refractive index no higher than 1.45, and said metal oxide having been deposited by oblique angle deposition.
Abstract:
The invention relates to a method for preparing an optical system item having a non-zero radius of curvature and coated with an interference coating. Said method includes: a) providing a thermoplastic film coated with a multilayer interference coating containing at least one layer having a refractive index of greater than 1.65 and at least one layer having a refractive index of less than or equal to 1.65, at least one of the interference coating layers being a vacuum-deposited organic/inorganic layer, b) laminating said coated thermoplastic film, by means of an adhesive layer, onto an optical system item including a substrate, and c) recovering said optical system item, including a substrate coated with the adhesive layer, from the thermoplastic film and the multilayer interference coating.
Abstract:
The invention relates to an item comprising a substrate having at least one main surface coated with a multilayer interferential coating comprising at least one layer with a refractive index higher than 1.65 and at least one layer with a refractive index lower than, or equal to, 1.65, at least one of the layers of the interferential coating being an organic-inorganic layer that has been deposited in a vacuum environment and has a thickness of at least 30 nm, said interferential coating having a thickness of at least 450 nm and/or at least 8 layers.
Abstract:
The invention concerns an ophthalmic lens having an increased resistance to thermal and hygroscopic stresses, said ophthalmic lens comprising a substrate, at least one main face of which is coated with a siloxane-based anti-abrasion hardcoat, characterized in that said ophthalmic lens further comprises at least one protective layer of an organic-inorganic material directly in contact with said hardcoat, said protective layer of organic-inorganic material having a Young's modulus higher than 20 GPa, preferably of at least 25 GPa.
Abstract:
The invention concerns an optical article comprising a substrate with two main surfaces, at least one of which is covered by a polymer coating having an outer surface, said coating comprising a first superficial layer beneath the outer surface having a first refractive index n1 and a second layer beneath the first superficial layer having a second refractive index n2, with n2
Abstract:
Aa method for manufacturing a set of semi-finished lenses and a lens from a semi-finished lens of the set and a set of semi-finished lenses each intended to be used in the manufacturing of a finished lens of determined target power, each semi-finished lens having a base curve chosen among a number N of base curves, wherein each base curve is associated to a respective range of powers of finished ophthalmic lenses to be manufactured, and each semi-finished lens of the set comprises a recorded holographic component, wherein the holographic components of the set exhibit a limited number of configurations, and each holographic component configuration is associated exclusively to one base curve among the N base curves.
Abstract:
The invention concerns an article comprising a nanolaminate coating, wherein the nanolaminate coating has a total thickness ranging from 20 to 500 nm and comprises at least one pair of layers constituted of adjacent first and second layers and a minimum of three layers, said first layer being an inorganic silica layer obtained by evaporation of silicon oxide, especially evaporation of SiO2, and the second layer being a silicon-based organic-inorganic layer obtained by deposition of an organosilicon compound or a mixture of organosilicon compounds under plasma or ionic assistance, and wherein the refractive index of the nanolaminate coating as a whole is lower than 1.58 at 550 nm.
Abstract:
A method for depositing, under vacuum, an amorphous layer primarily containing fluorine and carbon onto a substrate (9), characterized in that it comprises a step for depositing this layer with an ion gun (1) for ejecting ions in the form of a beam of accelerated ions that is created from at least one compound containing fluorine and carbon in a gaseous form or saturated vapor supplied to the ion canon. A method of this type makes it possible, in particular, to improve the adherence of an outer layer having a low index of refraction to the underlying layer of an anti-reflective stack. A device suited for carrying out the method is also described.