Abstract:
A pressure relief check valve for a hydraulically actuated clutch pack or limited slip device in a limited slip differential or torque coupling device. A ball seat is formed on the external surface of the differential case and is connected to a passageway leading to a limited slip device within the differential case to establish fluid communication there between. A ball rests on the valve seat and is retained thereon by a retainer and spring. The retainer is removable secured to the outer surface of the differential case and a coil spring is disposed between the ball and the retainer to bias the ball against the valve seat. When pressure within the differential case or limited slip device exceeds a predetermined pressure, the ball is lifted from the valve seat and fluid passes through the differential case to an exterior within the differential housing. When pressure in the differential case and limited slip device is less than the predetermined pressure, fluid is prevented from passing through the valve.
Abstract:
This transmnission differential of the type comprising a two-piece differential case defined by a cup-shaped case member and a side member integrally formed with a ring gear to thereby increase the strength of the ring gear and case. The side member is bolted onto the cup-shaped case member. The pinion gears of this invention are not formed with a spherical portion at its interface with the case because the present invention provides a novel design that does not require the spherical radii because the two-piece case can easily be assembled with resort to these additional machining requirements. The pinion shaft is secured against rotation by a pin trapped in a bore formed in the case when the ring gear side member is mounted to the cup-shaped case member. Because the cup-shaped case member is formed with a flat mating surface, the present invention does not require eyebrows formed into the case for drilling points where the bolt is received in the case. The two-piece design also eliminates the need for windows in the case. Therefore, the present invention reduced manufacturing costs while providing a stronger differential case.
Abstract:
A drive axle assembly for motor vehicles, includes a support beam member having a substantially flat, enlarged central plate section and two opposite arm sections, a differential assembly module secured to the central plate section and enclosed into a housing formed by a rear cover and a front cover secured to opposite surfaces of the central plate section. A method for assembling the drive axle assembly comprises the steps of securing the front cover to a front mounting surface of the support beam member, fastening the differential assembly module to the central plate section of the support beam member, and fastening the rear cover to the rear mounting surface of the support beam member.
Abstract:
An axle assembly employs a simple adjustable connection between the differential case and the housing to adjust the position of the ring gear relative to the pinion gear. A pair of adjustment collars facilitates positioning the differential case to selectively position the ring gear relative to the pinion gear of an input shaft. The adjustment collars threadingly engage the differential case. Bearings are disposed between the adjustment collars and the housing. The adjustment collars are rotated to position the differential case together with the ring gear. The adjustment collars are also provided to adjust the preload of the bearings. A locking collar is employed to lock the adjustment collars once the differential case and ring gear are properly positioned. In an alternate embodiment a single adjustment collar is employed. Shims and spacers are utilized to position the differential case and ring gear and the adjustment collar used to adjust the preload of the bearings.
Abstract:
A wheel end assembly in a steering beam axle for use in a motor vehicle. The wheel end assembly comprises a tube yoke attached to an axle tube defining an axle centerline, a steering knuckle defining a steering knuckle centerline, a driving axle shaft rotatably disposed in the axle tube, a live spindle rotatably supported by the steering knuckle, a stub shaft extending through the live spindle and rotatably coupled thereto, and a universal joint connecting the driving axle shaft and the stub shaft. The steering knuckle is pivotally coupled to the tube yoke through a pair of vertically spaced swivel joints defining a steering axis. The wheel end assembly further includes a knuckle centering adjuster for adjusting the knuckle centerline by selectively moving said steering knuckle relative to said tube yoke along said steering axis in order to align the knuckle centerline to the axle centerline.
Abstract:
A limited slip differential for vehicular applications that eliminates chattering noise from the differential while maintaining seal integrity. This is accomplished by the use of a differential casing that includes at least a pair of fluid seals isolating a first chamber for bathing the respective differential components in a fluid lubricant appropriate to the contained components. A fluid lubricant, such as one containing a friction modifier is particularly suitable for the array of friction plates and pads of a disk pack, but can be detrimental to sealing elements, such as about the pinion gear. The separate chambers allows for the use of different fluid lubricants.
Abstract:
The device for adjusting an endplay of an axle shaft in a differential assembly includes an axle shaft supported in a differential case for rotation about a longitudinal axis, and an endplay adjustment member threadedly mounted on a terminal shoulder provided at an inboard end of the axle shaft. The axle shaft has external splines adapted to mate with internal splines of a differential side gear and an annular groove located adjacent to the terminal shoulder. The annular groove receives a retainer ring provided to limit an axial displacement of the axle shaft in an outboard direction. The endplay adjustment member is selectively positionable on the terminal shoulder along the axial direction of the axle shaft to variably limit an axial movement of the retainer ring within the annular groove, thus adjusting the axle shaft endplay.
Abstract:
The drive axles of a motor vehicle differential assembly are secured within the central bores provided in the side gears of the differential assembly by a pair of arcuate retaining element having a rounded cross section which preferably is a piece of bar stock bent to define a 180° half-ring element that is securely held between an arcuate groove formed along the circumference of the axle and a rounded abutment surface provided on the side gear. The arcuate groove and rounded abutment surface reduce stress risers and eliminate the counterbore typically provided in the side gear. Moreover, the pair of retaining elements maximizes the frictional contact by circumscribing the axle by approximately 360°.
Abstract:
A lubrication system of an axle assembly comprising a differential carrier, a side bearing assembly, an annular drain-back spacer provided therebetween, and a device for selectively positioning the drain-back spacer relative to the bearing assembly. The drain-back spacer is provided with a drain-back channel formed therethrough. A method is provided for controlling flow of lubricant between a differential gear and an axle tube by selectively adjusting the position of the drain-back channel in order to provide the desired lubricant flow path.
Abstract:
A rigid drive axle assembly includes a support beam member having a substantially flat central plate section, a differential assembly module secured to the central plate section through at least two threaded studs extending from the central plate section. The differential assembly module includes a differential carrier frame member having two bearing hubs receiving differential bearings. A method for verifying a predetermined bearing preload of the differential assembly module comprises the steps of preloading the differential bearings to the predetermined bearing preload, inserting mounting bores in the bearing hubs of the frame member onto the mounting studs, and determining that the differential bearings are properly preloaded if the mounting studs are received in the mounting bores in the differential carrier frame member without substantial resistance, or determining that the differential bearings are not properly preloaded if the mounting studs may not be received in the mounting bores easily.