摘要:
An optical gas analyzer for measuring the percentage of components in a gas phase by IR absorption, containing a power source, a measuring path containing the gas sample, a photoelectric receiver with an evaluation circuit arranged downstream of it, which receiver detects the IR radiation from the measuring path, and a plurality of filters, which can be introduced one after another into the beam path at a predetermined filter change frequency f, wherein measured signals belonging to the filters are sent by the receiver due to the radiation extinction in the measuring path, is to be improved such that different components in the gas sample can be detected in a simple manner and at good selectivity. To accomplish this object, the receiver is a pyroelectric detector, the evaluation circuit has elements for the evaluation of the voltage signal of the pyroelectric detector, the filter change frequency f is set at a value in the range of the declining branch of the frequency response of the voltage signal, and the pyroelectric detector is selected to be such that the declining branch of the voltage signal has a decline of -20 dB per decade.
摘要:
A device with a water trap. The device has a gas sensor and is designed to send a gas sample flow through the water trap (2) and to feed it to the gas sensor (3). The water trap (2) is designed to be separably connected to the device. The device has a mount for connection to the water trap. The water trap (2) has a radio frequency marking (5). The device has a radio frequency detection device (6) with a detection area (7) for the radio frequency marking, which is designed to detect the radio frequency marking in the detection area and to generate a marking signal, which represents marking information of the radio frequency marking. The device is designed to be controlled as a function of the marking signal.
摘要:
A breathing gas system and water trap (1) is improved in respect to the reliability of operation and has an emptying device. The water trap (1) has a gas inlet (4), which meets a first water separating membrane (5) via a connection line. The connection line leads into a water tank (20) located deeper in the incoming flow direction from the first water separating membrane (5) and into a gas measuring device (2) with vacuum on the discharge side from the first water separating membrane (5) from the water trap (1). The water tank (20) has a rinsing gas flow line, which is arranged above the liquid level, leads upward via a gas-permeable membrane (6) and is likewise connected to the applied vacuum of the gas measuring device (2). The water tank (20) has a water transport line for emptying the water tank (20), which water transport line extends into the liquid and is provided with a downstream vacuum via a nonreturn valve (7) and a downstream liquid pump (17) or via a solenoid valve (21). The water trap (1) is equipped with a filling level detection system (8, 9, 22; 8, 9, 13; 8, 10), which is connected to a control and analyzing unit (3). The control and analyzing unit (3) is connected to the liquid pump (17) or to the solenoid valve (21), so that the water tank (20) can be emptied as a function of the signal of the filling level detection system (8, 9, 22; 8, 9, 13; 8, 10).
摘要:
A water trap (1) improved with respect to handling and operational safety includes: two semipermeable membranes (2) and at least one tank (7), wherein the membranes have a water penetration pressure greater than 750 hPa and are made of the same or different PTFE laminates. The gas flow is divided in a ratio between 10:90 and 25:75 into the flush-/purge branch and analysis branch to the sensors (12) and a path parallel to the sensors (12), respectively, with the aid of the membranes and downstream filter elements and via the material and configuration.
摘要:
A device for the analysis of the qualitative, optionally also the quantitative composition of gases, uses measuring light of known spectral composition that can pass through the gas to be analyzed and the gas can be caused to interact. A detector arrangement is present, which can detect light originating from the sites of the interaction between the measuring light and the gas to be analyzed. At least one refractive-diffractive optical element is provided, which is transparent over its entire surface and contributes to a wavelength-dependent imaging of the light to be detected onto the detector arrangement in a transmitting manner. The refractive-diffractive optical element is arranged in the ray path between the area in which the interaction between the gas to be analyzed and the measuring light takes place and the detector arrangement.
摘要:
A device for the analysis of the qualitative, optionally also the quantitative composition of gases, uses measuring light of known spectral composition that can pass through the gas to be analyzed and the gas can be caused to interact. A detector arrangement is present, which can detect light originating from the sites of the interaction between the measuring light and the gas to be analyzed. At least one refractive-diffractive optical element is provided, which is transparent over its entire surface and contributes to a wavelength-dependent imaging of the light to be detected onto the detector arrangement in a transmitting manner. The refractive-diffractive optical element is arranged in the ray path between the area in which the interaction between the gas to be analyzed and the measuring light takes place and the detector arrangement.
摘要:
An anesthesia system (1) is provided with an anesthesia apparatus (2), at least one anesthetic dispenser (3) and at least one parameter detection device (7) for detecting at least one parameter of the at least one anesthetic dispenser (3) at the anesthesia apparatus (2). The parameter detection device (7) is provided with an apparatus interface unit (10) with at least one camera (17) at the anesthesia apparatus (2) and with a dispenser interface unit (11) with at least one image pattern (16) at the at least one anesthetic dispenser (3). The at least one image pattern (16) can be detected by the camera (17), and the dispenser interface unit (11) is a passive dispenser interface unit (11).
摘要:
A water trap (1) improved with respect to handling and operational safety includes: two semipermeable membranes (2) and at least one tank (7), wherein the membranes have a water penetration pressure greater than 750 hPa and are made of the same or different PTFE laminates. The gas flow is divided in a ratio between 10:90 and 25:75 into the flush-/purge branch and analysis branch to the sensors (12) and a path parallel to the sensors (12), respectively, with the aid of the membranes and downstream filter elements and via the material and configuration.
摘要:
A water trap for a sample gas flow includes a housing 1 fastened to a holder 2. The housing 1 has a tank 3 for receiving liquids and gases. Above the tank 3, the housing 1 contains a first chamber divided by a first hydrophobic membrane 10. The lower divided part 12 of the first chamber is connected to the sample gas flow via the holder 2 on the inlet side and to the gas space in the tank 3 on the outlet side. The upper divided part 11 of the first chamber is connected to a gas analyzer 4 via the holder 2 and is connected to a vacuum. The housing 1 contains a second chamber divided by a second hydrophobic membrane 20. The lower divided part 22 of the second chamber is connected to the gas space in the tank 3 at a point 18 which is located lower in the direction of the liquid level and relative to the entry of the connection line from the first chamber. The upper divided part 21 of the second chamber is connected to a volume flow meter 8 and to the same vacuum. The free areas through which the gas flows and the pore sizes of the first and second hydrophobic membranes are selected so that the ratio of the gas volume flow through the first and second hydrophobic membranes is in the range of 5:1 to 20:1.