Abstract:
A level shifter circuit a first transistor connected between a power source terminal of the level shifter circuit and an output terminal of the level shifter circuit, the first transistor being configured to transmit, in response to a first signal and a second signal, a power source voltage applied from the power source terminal to the output terminal, the first signal being received from an input terminal of the level shifter circuit through a first gate of the first transistor, the second signal being received through a second gate of the first transistor, and a second transistor connected between a ground terminal of the level shifter circuit and the output terminal, the second transistor being configured to transmit a ground voltage from the ground terminal to the output terminal in response to a gate signal received through a gate of the second transistor.
Abstract:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a second semiconductor pattern disposed on the substrate and configured to provide a channel region, and a first semiconductor pattern disposed between the substrate and the second semiconductor pattern, wherein the first semiconductor pattern includes a channel region that is a portion in contact with the second semiconductor pattern and source/drain regions that are portions exposed by the second semiconductor pattern.
Abstract:
Provided is a single input level shifter. The single input level shifter includes: an input unit applying a power voltage to a first node in response to an input signal and applying the input signal to a second node in response to a reference signal; a bootstrapping unit applying the power voltage to the second node according to a voltage level of the first node; and an output unit applying the input signal to an output terminal in response to the reference signal and applying the power voltage to the output terminal according to the voltage level of the first node, wherein the bootstrapping unit includes a capacitor between the first and second nodes, and when the input signal is shifted from a first voltage level to a second voltage level, the bootstrapping unit raises the voltage level of the first node to a level higher than the power voltage.
Abstract:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
Abstract:
Provided is a gate driver circuit. The gate driver circuit includes a plurality of sequentially connected stages, and each of stages includes an input unit including two input transistors forming diode connection, a pull-up unit including a pull-up transistor and a bootstrap capacitor, and first and second pull-down units each including two transistors. According to embodiments, an input capacitor is further included which is connected to a node between the input unit and the pull-up unit. In addition, a carry unit is further included which is connected to an output terminal and formed to transmit an output signal in a high state or a low state to a next stage.
Abstract:
According to example embodiments of the inventive concept, provided is a transistor with a nano-layered oxide semiconductor layer. The oxide semiconductor layer may include at least one first nano layer and at least one second nano layer that are alternatingly stacked one on another. Here, the first nano layer and the second nano layer may include different materials from each other, and thus, a channel with high electron mobility may be formed at the interface between the first and second nano layers. Accordingly, the transistor can have high reliability.