Abstract:
Provided is a method for fabricating a flexible display device. The method includes attaching a shape memory alloy film memorizing a shape thereof as a curved shape at a shape memory temperature or lower to a flexible substrate at a temperature higher than the shape memory temperature, forming a display device on the flexible substrate, and returning the shape memory alloy to the curved shape to remove the shape memory alloy film from the flexible substrate.
Abstract:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
Abstract:
Provided is a display device. The display device includes a lower display element where a substrate, a first lower electrode, a liquid crystal part, and a second lower electrode are sequentially stacked, an upper display element stacked vertical to the lower display element, where a first upper electrode, a light emitting part, a second upper electrode, and a protective part are sequentially stacked, and a middle part configured to deliver a driving signal to the lower and upper display elements, between the lower and upper display elements.
Abstract:
Provided is a method of fabricating an electronic circuit. The method includes preparing a substrate, forming a polymer film on the substrate, patterning the polymer film to form a polymer pattern, and forming an electronic device on the polymer pattern.
Abstract:
Provided are a thin film transistor and a method for manufacturing the same. The thin film transistor manufacturing method includes forming a gate electrode on a substrate, forming an active layer that is adjacent to the gate electrode and includes an oxide semiconductor, forming an oxygen providing layer on the active layer, forming a gate dielectric between the gate electrode and the active layer, forming source and drain electrodes coupled to the active layer, forming a planarizing layer covering the gate electrode and the gate dielectric, forming a hole exposing the active layer, and performing a heat treatment process onto the planarizing layer in an atmosphere of oxygen.
Abstract:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
Abstract:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
Abstract:
Provided is a pressure sensing element including a first electrode, a pressure sensing unit on the first electrode, a second electrode disposed on the pressure sensing unit and having first and second points on a top surface thereof, a first elastic member on the second electrode, and a second elastic member on the first elastic electrode, wherein a thickness of the first elastic member decreases from the first point toward the second point, and a thickness of the second elastic member increases from the second point toward the first point.
Abstract:
Provided is a transparent organic light emitting diode (OLED) lighting device in which opaque metal reflectors are formed to adjust light emitting directions. The transparent OLED lighting device includes a transparent substrate, a transparent anode formed on a predetermined region of the transparent substrate, a reflective anode formed adjacent to the transparent anode on another region of the transparent substrate, an organic layer formed on the transparent and reflective anodes, and a transparent cathode and an encapsulation substrate sequentially stacked on the organic layer. Directions of light emitted from the organic layer vary depending on the current applied to the transparent and reflective anodes.
Abstract:
Provided is a method for fabricating an electronic device, the method including: preparing a carrier substrate including an element region and a wiring region; forming a sacrificial layer on the carrier substrate; forming an electronic element on the sacrificial layer of the element region; forming a first elastic layer having a corrugated surface on the first elastic layer of the wiring region; forming a metal wirings electrically connecting the electronic element thereto, on the first elastic layer of the wiring region; forming a second elastic layer covering the metal wirings, on the first elastic layer; forming a high rigidity pattern filling in a recess of the second elastic layer above the electronic element so as to overlap the electronic element, and having a corrugated surface; forming a third elastic layer on the second elastic layer and the high rigidity pattern; and separating the carrier substrate.