摘要:
Process for the preparation of phenol and cyclohexanone which comprises: a. the synthesis of cyclohexylbenzene by the hydro-alkylation of benzene by contact with hydrogen or the alkylation of benzene with cyclohexene using Y zeolites; b. the selective aerobic oxidation of cyclohexylbenzene to the corresponding hydroperoxide catalyzed by N-hydroxy-derivatives in the presence of polar solvents; and c. the scission of the hydroperoxide of cyclohexylbenzene to phenol and cyclohexanone by homogeneous or heterogeneous acid catalysts; characterized in that the synthesis of cyclohexylbenzene takes place in the presence of a catalytic system comprising a Y zeolite and an inorganic ligand wherein the Y zeolite has a crystalline structure with openings consisting of 12 tetrahedra and the inorganic ligand is γ-alumina, and wherein said catalytic composition is characterized by a pore volume, obtained by adding the mesoporosity and macroporosity fractions, greater than or equal to 0.7 cm3/g, wherein at least 30% of said volume consists of pores with a diameter greater than 100 nanometers.
摘要:
Process for the preparation of phenol and cyclohexanone which comprises: a. the synthesis of cyclohexylbenzene by the hydro-alkylation of benzene by contact with hydrogen or the alkylation of benzene with cyclohexene using Y zeolites; b. the selective aerobic oxidation of cyclohexylbenzene to the corresponding hydroperoxide catalyzed by N-hydroxy-derivatives in the presence of polar solvents; and c. the scission of the hydroperoxide of cyclohexylbenzene to phenol and cyclohexanone by homogeneous or heterogeneous acid catalysts; characterized in that the synthesis of cyclohexylbenzene takes place in the presence of a catalytic system comprising a Y zeolite and an inorganic ligand wherein the Y zeolite has a crystalline structure with openings consisting of 12 tetrahedra and the inorganic ligand is γ-alumina, and wherein said catalytic composition is characterized by a pore volume, obtained by adding the mesoporosity and macroporosity fractions, greater than or equal to 0.7 cm3/g, wherein at least 30% of said volume consists of pores with a diameter greater than 100 nanometers.
摘要:
Process for the alkylation of aromatic hydrocarbons by means of aliphatic alcohols containing from 1 to 8 carbon atoms, which comprises feeding the hydrocarbon and alcohol to the head of a fixed-bed reactor, operating with “trickle flow” regime, containing at least one layer of a catalyst comprising a zeolite selected from medium-pore zeolites and large-pore zeolites.
摘要:
Process for the alkylation of aromatic hydrocarbons by means of olefins containing from 2 to 8 carbon atoms, which comprises feeding the hydrocarbon, olefin, and possibly water, to the head of a fixed-bed reactor, operating with a “trickle flow” regime, containing at least one layer of a catalyst comprising a medium-or large-pore zeolite.
摘要:
A catalytic composition for transalkylation of aromatic hydrocarbons which contains a zeolite and an inorganic binder and has an extra-zeolitic porosity higher than or equal to 0.7 cc/g for a fraction of pores of which at least 30% have a diameter greater than 100 nanometers. A catalytic composition having a crushing strength not lower than 1.7 kg/mm and an apparent density not higher than 0.5 g/cc. A process for transalkylating polyalkylated aromatic hydrocarbons using a catalytic composition.
摘要:
Process for the alkylation of aromatic hydrocarbons by means of olefins containing from 2 to 8 carbon atoms, which comprises feeding the hydrocarbon, olefin, and possibly water, to the head of a fixed-bed reactor, operating with a “trickle flow” regime, containing at least one layer of a catalyst comprising a medium- or large-pore zeolite.
摘要:
A catalytic composition is described for the transalkylation of aromatic hydrocarbons comprising a zeolite and an inorganic binder, characterized by an extra-zeolitic porosity, i.e. the porosity obtained by adding the mesoporosity and the macroporosity fractions present in the catalytic composition, higher than or equal to 0.7 cc/g, which is such as to consist for a fraction of at least 30% of pores having a diameter greater than 100 nanometers. These catalytic compositions have a crushing strength not lower than 1.7 kg/mm and an apparent density not higher than 0.5 g/cc. A process is also described for the transalkylation of polyalkylated aromatic hydrocarbons which uses these catalytic compositions.
摘要:
A catalytic composition for transalkylation of aromatic hydrocarbons which contains a zeolite and an inorganic binder and has an extra-zeolitic porosity higher than or equal to 0.7 cc/g for a fraction of pores of which at least 30% have a diameter greater than 100 nanometers. A catalytic composition having a crushing strength not lower than 1.7 kg/mm and an apparent density not higher than 0.5 g/cc. A process for transalkylating polyalkylated aromatic hydrocarbons using a catalytic composition.
摘要:
Process for the production of vinyl aromatic monomers which comprises: a) feeding an aromatic stream and an olefinic stream to an alkylation unit; b) feeding the reaction product coming from the alkylation section to a first separation section; c) recovering the mono-alkylated aromatic hydrocarbon and the heavy bottom product from the first separation section; d) feeding the mono-alkylated aromatic to a dehydrogenation section; e) feeding the reaction product coming from the dehydrogenation section to a second purification/separation section; f) also feeding the heavy bottom product of step (c) to the second purification/separation section; g) recovering a stream consisting of the vinyl aromatic monomer with a purity higher than 99.7 by weight.
摘要:
Process for the production of vinyl aromatic monomers which comprises: a) feeding an aromatic stream and an olefinic stream to an alkylation unit; b) feeding the reaction product coming from the alkylation section to a first separation section; c) recovering the mono-alkylated aromatic hydrocarbon and the heavy bottom product from the first separation section; d) feeding the mono-alkylated aromatic to a dehydrogenation section; e) feeding the reaction product coming from the dehydrogenation section to a second purification/separation section; f) also feeding the heavy bottom product of step (c) to the second purification/separation section; g) recovering a stream consisting of the vinyl aromatic monomer with a purity higher than 99.7 by weight.