Abstract:
A ceramic material for capacitors using multilayer technology of formula (I): Pb(1−1.5a)AaBb(Zr1−xTix)(1−c−d−e−f)CeSicO3+y·PBO wherein A is selected from the group consisting of La, Nd, Y, Eu, Gd, Tb, Dy, Ho, Er and Yb; C is selected from the group consisting of Ni and Cu; and 0
Abstract:
A ceramic material for capacitors uses multilayer technology of the general formula: Pb1−1.5a−0.5b+1.5d+e+0.5f)AaBb(Zr1−xTix)(1−c−d−e−f)LidCeFefSicO3+y.PBO wherein A is selected from the group consisting of La, Nd, Y, Eu, Gd, Tb, Dy, Ho, Er and Yb; B is selected from the group consisting of Na, K and Ag; C is selected from the group consisting of Ni, Cu, Co and Mn; and 0 0.
Abstract:
The present invention relates to a capacitor assembly (1) which comprises at least one ceramic multilayer capacitor (2) comprising ceramic layers (4) and first and second electrodes (5a, 5b) arranged therebetween, and a base (3). The base (3) comprises a substrate (9) and conductor tracks (10a, 10b), wherein the conductor tracks (10a, 10b) lead from a top side (11) of the substrate (9) said top side facing toward the multilayer capacitor (2), to an underside (12) of the substrate (9), said underside facing away from the multilayer capacitor (2). The multilayer capacitor (2) is mechanically secured on the base (3). The first electrodes (5a) and the second electrodes (5c) are electrically contacted with the conductor tracks (10a, 10b).
Abstract:
The present invention relates to a capacitor assembly (1) which comprises at least one ceramic multilayer capacitor (2) comprising ceramic layers (4) and first and second electrodes (5a, 5b) arranged therebetween, and a base (3). The base (3) comprises a substrate (9) and conductor tracks (10a, 10b), wherein the conductor tracks (10a, 10b) lead from a top side (11) of the substrate (9) said top side facing toward the multilayer capacitor (2), to an underside (12) of the substrate (9), said underside facing away from the multilayer capacitor (2). The multilayer capacitor (2) is mechanically secured on the base (3). The first electrodes (5a) and the second electrodes (5c) are electrically contacted with the conductor tracks (10a, 10b).
Abstract:
A capacitor arrangement is disclosed. In an embodiment the arrangement includes a ceramic multilayer capacitor including a main body comprising ceramic layers, first electrode layers and second electrode layers arranged there between and a first external contact and a second external contact on mutually opposite side surfaces, wherein the first external contact is electrically conductively connected to the first electrode layers and the second external contact is electrically conductively connected to the second electrode layers.
Abstract:
A ceramic multi-layer capacitor includes a main body, which has ceramic layers arranged along a layer stacking direction to form a stack, and first and second electrode layers arranged between the ceramic layers. The multi-layer capacitor also includes a first external contact-connection arranged on a first side surface of the main body and electrically conductively connected to the first electrode layers, and a second external contact-connection arranged on a second side surface of the main body. The second side surface is situated opposite the first side surface and is electrically conductively connected to the second electrode layers.
Abstract:
A multi-layer capacitor has dielectric layers and electrode layers arranged therebetween. The multi-layer capacitor has a number of segments that are connected to one another. At least one relief region is provided between the segments. The invention furthermore provides a method for producing such a multi-layer capacitor.
Abstract:
A capacitor arrangement includes at least one ceramic multilayer capacitor with a main body having ceramic layers and first and second electrode layers arranged therebetween. The capacitor also has a first external contact and a second external contact on mutually opposite side surfaces. The first external contact is electrically conductively connected to the first electrode layers and the second external contact is electrically conductively connected to the second electrode layers. A contact arrangement includes two metallic contact plates, between which the at least one ceramic multilayer capacitor is arranged. The first and second external contacts are electrically conductively connected in each case to one of the metallic contact plates.
Abstract:
An electrical component is disclosed. In an embodiment the component includes a component body and at least one connection element having a plastic body, wherein the at least one connection element is connected to the component body via a metal layer.