摘要:
A piezoelectric material composition may be represented by Equation 1,
0 . 9
6
(
Na a
K
1 - a
)
(
Nb b
(
T
1 - b
)
)
O 3
-
(
0.04 - x
)
M A
M B
O 3
-
x (
Bi c
Ag
1 - c
)
M B
O 3
+
d
mol
%
A
[
Equation
1
]
where T is Sb, Ta, or V, MA is Sr, Ba, or Ca, MB is Zr, Hf, Ti, or Sn, and A is Fe2O3, Co2O3, Mn2O3, ZnO, GeO2, CuO, or NiO, and 0.40≤a≤0.60, 0.90≤b≤1.00, 0.30≤c≤0.70, 0.00≤x≤0.04, and 0.00
摘要:
A piezoelectric device comprises: a substrate (12) and a lead magnesium niobate-lead titanate (PMNPT) piezoelectric film on the substrate (12). The PMNPT film comprises: a thermal oxide layer (20) on the substrate (12); a first electrode above on the thermal oxide layer (20); a seed layer (26) above the first electrode; a lead magnesium niobate-lead titanate (PMNPT) piezoelectric layer (16) on the seed layer (26), and a second electrode on the PMNPT piezoelectric layer (16). The PMNPT film comprises a piezoelectric coefficient (d33) of greater than or equal to 200 pm/V.
摘要:
The invention relates to a ceramic material for capacitors. In order to achieve reduced self-heating on assembly of the material into multilayer capacitors with antiferroelectric properties and a high dielectric constant, a ceramic material of formula ┌Pb(1-r)(BaxSryCaz)r┘(1-1.5a-1.5b-0.5c)(XaYb)Ac(Zr1-dTid)O3 is proposed, where X and Y both represent a rare metal earth selected from the group consisting of La, Nd, Y, Eu, Gd, Tb, Dy, Ho, Er and/or Yb; where A represents a monovalent ion; x+y+z=1; x and/or y and/or z>0; 0
摘要:
A ceramic multi-layer capacitor includes a main body, which has ceramic layers arranged along a layer stacking direction to form a stack, and first and second electrode layers arranged between the ceramic layers. The multi-layer capacitor also includes a first external contact-connection arranged on a first side surface of the main body and electrically conductively connected to the first electrode layers, and a second external contact-connection arranged on a second side surface of the main body. The second side surface is situated opposite the first side surface and is electrically conductively connected to the second electrode layers.
摘要:
A piezoelectric component has at least one piezoelectric ceramic layer and at least one electrode adjacent the piezoelectric ceramic layer. The piezoelectric ceramic layer has a piezoelectric ceramic material of the general formula Pb1-x-y-[(2a-b)/2]-p/2V[(2a-b)/2-p/2]″CupBaxSry[(TizZr1-z)1-a-bWaREb]O3, where 0≦x≦0.035, 0≦y≦0.025, 0.42≦z≦0.5, 0.0045≦a≦0.009, 0.009≦b≦0.011, 2a>b, p≦2a−b, RE is a rare earth metal, and V″ is a Pb vacancy.
摘要:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9
摘要翻译:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, 1)表示的复合氧化物(B)或羧酸(B)的化合物(其中0.9
摘要:
A piezoelectric ceramic composition contains a perovskite composition which is represented by (Pba.Rex){Zrb.Tic, .(Ni1/3Nb2/3)d.(Zn1/3Nb2/3)e}O3 (wherein Re represents La and/or Nd, and a-e and x satisfy the following conditions 0.95≦a≦1.05, 0≦x≦0.05, 0.35≦b≦0.45, 0.35≦c≦0.45, 0
摘要:
A method of manufacturing a piezoelectric element including a step of preparing a green sheet A including a portion which becomes a fired piezoelectric body later, by use of a piezoelectric material; a step of joining, to at least one surface of the green sheet A, a green sheet B having an opening in a portion facing the portion which becomes the fired piezoelectric body later, followed by firing to obtain the fired piezoelectric body provided with a reinforcing plate to which the reinforcing plate formed owing to the firing of the green sheet B is attached; and a step of forming a film-like electrode in a portion obtained by the firing of the green sheet A in the fired piezoelectric body provided with the reinforcing plate.
摘要:
Provided is piezoelectric/electrostrictive body generating large electric-field-induced strain, and having high durability with respect to an electric field having a direction opposite to a polarization direction. A composition of piezoelectric/electrostrictive ceramics is represented by a general formula Pba{ZnbSbc(ZrdTi1-d)1-b-c}O3. As for a, b, c, and d, 0.985≦a≦0.998, 0.010≦b≦0.040, 0.025≦c≦0.090, 0.460≦d≦0.510, and 2.125≦c/b≦3.000 are satisfied. An accessory component containing at least one element selected from the group consisting of Mn, Cr, Fe, and a rare-earth element may be added to a main component. An additive amount of the at least one element relative to 100 parts by weight of the main component is 0.3 parts by weight or less in terms of an oxide.
摘要:
The present invention relates to a piezoelectric material for low sintering and more particularly, to piezoelectric materials for low sintering having a composition formula of Pb(Zr, Ti)O3—Pb(Ni, Nb)O3 (hereinafter referring to as ‘PZT-PNN’). The PZT-PNN piezoelectric material according to the present invention shows excellent piezoelectric properties compared to the convention piezoelectric materials even at a low sintering temperature of 950° C. or lower. It thus allows reducing manufacturing cost by using relatively lower-cost electrode materials than Pd or Pt and increasing reliability of operation temperature through improving the glass transition temperature.