Abstract:
A semiconductor device includes a first wafer having at least one first integrated-circuit chip and a first support layer surrounding the first integrated circuit chip. A first electrical-connection layer is placed on a frontside of the first wafer and includes a first electrical-connection network. A second wafer is placed on a frontside of the first electrical-connection layer. The second wafer includes at least one second integrated-circuit chip and a second support layer surrounding the second integrate circuit chip. The second integrated circuit chip has an active side facing the first electrical-connection layer, and one or more through-holes filled with a conductor forming electrical-connection vias. A second electrical-connection layer is placed on the backside of the second wafer and includes a second electrical-connection network.
Abstract:
A semiconductor device includes a first wafer having at least one first integrated-circuit chip and a first support layer surrounding the first integrated circuit chip. A first electrical-connection layer is placed on a frontside of the first wafer and includes a first electrical-connection network. A second wafer is placed on a frontside of the first electrical-connection layer. The second wafer includes at least one second integrated-circuit chip and a second support layer surrounding the second integrate circuit chip. The second integrated circuit chip has an active side facing the first electrical-connection layer, and one or more through-holes filled with a conductor forming electrical-connection vias. A second electrical-connection layer is placed on the backside of the second wafer and includes a second electrical-connection network.
Abstract:
A barrel for an electrically-controllable variable focal length lens in a button-battery type housing includes a hollow isolating cylindrical tube with an inner diameter substantially equal to that of the lens housing, with one or bumps extending radially towards the inside of the tube and forming bearing surfaces for the lens periphery in a same radial plane. First metallizations extend on at least one of the bearing surfaces and therefrom into first channels formed in the internal wall of the tube towards at least one end of the tube, and second metallizations, each of which forms a contact area on the internal surface of the tube to bear against the lateral surface of the lens and extends towards at least one end of the cylinder.
Abstract:
A focussing device for a lens, including a frame, a lens carrier movable relative to the frame from a first position along an optical axis, a motor for driving the lens carrier along the optical axis, and at least one biasing member adapted to bias the lens carrier towards the first position. The biasing member may include one or more bending members.
Abstract:
An assembly structure of a mobile objective above an optical sensor assembled on a support board includes a cover assembled on the support board with an opening facing the sensor, this cover having a conical external surface with an axis orthogonal to the support board. The structure also includes a frame having first and second elements, shiftable with respect to each other under the action of an electric motor. The first frame element has a conical internal surface capable of mating with the conical external surface of the cover to ensure its positioning and to put resilient connection blades of a fixed portion of the motor in contact with pads formed on the support board, and the second frame element supports the objective and a shiftable portion of the motor.
Abstract:
A camera module lens cap is provided to protect a camera module in a mobile device where the camera module is exposed. The camera module lens cap includes an optically transparent member for positioning adjacent a camera lens, and a housing for carrying the optically transparent member. The housing includes an overhanging lip for engaging a base of the camera module.
Abstract:
A barrel for an electrically-controllable variable focal length lens in a button-battery type housing includes a hollow isolating cylindrical tube with an inner diameter substantially equal to that of the lens housing, with one or bumps extending radially towards the inside of the tube and forming bearing surfaces for the lens periphery in a same radial plane. First metallizations extend on at least one of the bearing surfaces and therefrom into first channels formed in the internal wall of the tube towards at least one end of the tube, and second metallizations, each of which forms a contact area on the internal surface of the tube to bear against the lateral surface of the lens and extends towards at least one end of the cylinder.
Abstract:
A camera module lens cap is provided to protect a camera module in a mobile device where the camera module is exposed. The camera module lens cap includes an optically transparent member for positioning adjacent a camera lens, and a housing for carrying the optically transparent member. The housing includes an overhanging lip for engaging a base of the camera module.
Abstract:
An assembly structure of a mobile objective above an optical sensor assembled on a support board includes a cover assembled on the support board with an opening facing the sensor, this cover having a conical external surface with an axis orthogonal to the support board. The structure also includes a frame having first and second elements, shiftable with respect to each other under the action of an electric motor. The first frame element has a conical internal surface capable of mating with the conical external surface of the cover to ensure its positioning and to put resilient connection blades of a fixed portion of the motor in contact with pads formed on the support board, and the second frame element supports the objective and a shiftable portion of the motor.
Abstract:
The internal propagation of radiation between a radiation source and radiation detector mounted within a sensor package is prevented by the use of an optical isolator. The optical isolator is formed by the combination of a baffle mounted between the source and detector and a groove formed in an upper surface of the sensor package between the source and detector. A bottom of the groove is positioned adjacent to an upper edge of the baffle.