Abstract:
An arrangement for holding a particle beam apparatus such as a transmission electron microscope. The arrangement is sufficient for receiving a good resolution in the area of 1 Å or less, said arrangement still being under more or less no influence of the environment, in particular, building vibrations. In one embodiment, the arrangement comprises a base structure comprising a plurality of hollow bodies, at least one of said hollow bodies having a first length extension in a first direction, a second length extension in a second direction and a third length extension in a third direction, said first length extension being larger than said second and third length extensions, and wherein a cross section of said at least one of said hollow bodies perpendicular to said first direction is substantially triangular. Due to the hollow body shape, a very stiff structure is provided with a very good eigenfrequency.
Abstract:
An electron beam device has an electron gun for generating an electron beam, an objective lens for focusing the electron beam on an object and at least one detector for detecting electrons emitted by the object or electrons backscattered by the object. Detection of electrons emitted by or backscattered by an object may be simplified and improved using quadrupole devices and certain configurations of these devices provided in the electron beam device.
Abstract:
An electron microscopy system and an electron microscopy method for detection of time dependencies of secondary electrons generated by primary electrons is provided, in which the primary electron pulses are directed onto a sample surface and electrons emanating from the sample surface are detected, time resolved. To this end the system comprises in particular a cavity resonator. A cavity resonator can also be used to reduce aberrations of focusing lenses.
Abstract:
A detector for scanning electron microscopes with high pressure in the sample chamber has a first electrode for accelerating electrons emergent from a sample received on the sample holder, and at least one second electrode, the end of which directed toward the sample holder is at a smaller distance from the sample holder than the first electrode, and is at a potential between the potential of the first electrode and the potential of the beam guiding tube. The volume of the secondary electron cascade is increased by the second electrode. In an alternative embodiment for a gas scintillation detector, there is adjoined to a region of high secondary electron amplification, an elongate region in which the amplification factor for secondary electrons is approximately 1. The first region serves for the production of a relatively large electron current and the second, elongate, region for the production of a strong photon signal while maintaining the photon current.
Abstract:
With a scanning electron microscope having an electron gun and a specimen chamber between which one or more pressure stage apertures are arranged, through whose orifices a primary electron beam can be deflected to a specimen in the specimen chamber, where the lowest pressure stage aperture (18) nearest the specimen, through which the primary electron beam strikes the specimen, is set up to shield an elevated pressure in the specimen chamber with respect to the remaining microscope column of the scanning electron microscope and to allow secondary electrons emanating from the specimen to pass through their orifice to reach at least one detector, the detector is a high-sensitivity detector (74) biased at a positive potential with respect to the specimen. At least one electrode (44, 55) which is at a positive potential with respect to the pressure stage aperture (18) and is adapted to deflect the secondary electrons from the specimen to the detector (74) may be arranged above the bottom pressure stage aperture (18). As an alternative, the scanning electron microscope is equipped for detection of secondary electrons through the orifice of at least one pressure stage aperture which is constructed in layers of at least two conductive layers which are electrically insulated from one another and can be biased with potentials.
Abstract:
An electron beam device has an electron gun for generating an electron beam, an objective lens for focusing the electron beam on an object and at least one detector for detecting electrons emitted by the object or electrons backscattered by the object. Detection of electrons emitted by or backscattered by an object may be simplified and improved using quadrupole devices and certain configurations of these devices provided in the electron beam device.
Abstract:
A detector for scanning electron microscopes, which can be used under different pressure conditions in the specimen chamber of the electron microscope, designed for the detection of both electrons and light. For this purpose, the detector has a photodetector and a scintillator of a material transmissive for visible light connected before the photodetector. The scintillator can be provided with a coating transparent to visible light. By the application of different potentials, the detector is suitable for the detection of electrons in high vacuum and for the detection of light with high pressures in the specimen chamber.
Abstract:
An electron microscopy system and an electron microscopy method for detection of time dependencies of secondary electrons generated by primary electrons is provided, in which the primary electron pulses are directed onto a sample surface and electrons emanating from the sample surface are detected, time resolved. To this end the system comprises in particular a cavity resonator. A cavity resonator can also be used to reduce aberrations of focusing lenses.