摘要:
A system for detecting a plurality of analytes in a sample includes an aperture array and a lens array for generating and focusing a plurality of excitation sub-beams on different sub-regions of a substrate. These sub-regions can be provided with different binding sites for binding different analytes in the sample. By detecting the different luminescent responses in a detector, the presence or amount of different analytes can be determined simultaneously. Alternatively or in addition, collection of the luminescence radiation can be performed using the lens array for directly collecting the luminescence response and for guiding the collected luminescence response to corresponding apertures. The excitation sub-beams may be focused at the side of the substrate opposite of the lens array, and an immersion fluid is provided between the lens array and the substrate to increase the collection efficiency of the luminescence radiation.
摘要:
A system and method is described for detecting a plurality of analytes in a sample. The characterization system (100) comprises an aperture array (108) and a lens array (110) for generating and focusing a plurality of excitation sub-beams on different sub-regions of a substrate. These sub-regions can be provided with different binding sites for binding different analytes in the sample. By detecting the different luminescent responses in a detector, the presence or amount of different analytes can be determined simultaneously. Alternatively or in addition thereto collection of the luminescence radiation can be performed using the lens array for directly collecting the luminescence response and for guiding the collected luminescence response to corresponding apertures. In a preferred embodiment, the excitation sub-beams are focused at the side of the substrate opposite of the lens array and an immersion fluid is provided between the lens array and the substrate to increase the collection efficiency of the luminescence radiation.
摘要:
A detection system, comprising: a radiation source (24) for providing input radiation; a radiation focusing arrangement (26) for providing the input radiation to an analysis region of a sample (20);—a radiation collection (26) arrangement for collecting output radiation from the analysis region of the sample resulting from interaction of the input radiation with the sample; a radiation detector (28) for detecting the collected output radiation; operating means (40,50,60) for operating the detection device in a first detection mode and a second detection mode, wherein in the first detection mode the analysis has a first size and/or shape and wherein in the second detection mode the analysis region has a second size and/or shape that is different from the first size and/or shape.
摘要:
A detection system, comprising: a radiation source (24) for providing input radiation; a radiation focusing arrangement (26) for providing the input radiation to an analysis region of a sample (20);—a radiation collection (26) arrangement for collecting output radiation from the analysis region of the sample resulting from interaction of the input radiation with the sample; a radiation detector (28) for detecting the collected output radiation; operating means (40,50,60) for operating the detection device in a first detection mode and a second detection mode, wherein in the first detection mode the analysis has a first size and/or shape and wherein in the second detection mode the analysis region has a second size and/or shape that is different from the first size and/or shape.
摘要:
A detection system is described (100) for detecting luminescence sites on a substrate (6). The detection system (100) typically comprises an irradiation unit (102) for generating at least one excitation irradiation beam for exciting luminescence sites on the substrate (6). The at least one excitation irradiation beam may be a plurality of excitation irradiation beams. The detection system (100) also comprises a first optical element, e.g. refractive element (25), adapted for receiving at least two irradiation beams of different wavelengths or wavelength ranges, the at least two irradiation beams being excitation irradiation beam(s) to be focused on a substrate and/or luminescence irradiation beam(s) to be collected from the excited luminescence sites on the substrate (6). The detection system (100) also comprises an optical compensator for adjusting at least one of the at least two irradiation beams of different wavelengths or wavelength ranges so as to reduce or compensate for optical aberrations. The present invention also relates to a corresponding method for detecting, a phase plate and a method for designing such a phase plate.
摘要:
A detection system for detecting luminescence sites on a substrate and including an irradiation unit for generating at least one excitation irradiation beam for exciting luminescence sites on the substrate; a first optical element, e.g. refractive element adapted for receiving at least two irradiation beams of different wavelengths or wavelength ranges, the at least two irradiation beams being excitation irradiation beam(s) to be focused on a substrate and/or luminescence irradiation beam(s) to be collected from the excited luminescence sites on the substrate; and an optical compensator for adjusting at least one of the at least two irradiation beams of different wavelengths or wavelength ranges so as to reduce or compensate for optical aberrations.
摘要:
A method and apparatus for extracting magnetic particles from a sample includes placing the sample near a liquid carrier, which is immiscible with it, in a configuration stable under the influence of gravity. The magnetic particles are moved by a magnetic field from the sample and into the carrier. The magnetic particles are non-wetting with respect to the carrier and will therefore form agglomerates in the carrier.
摘要:
The invention relates to a micro valve for use in a biosensor, a micro fluidic device, use of such a device, and a micro fluidic element. Biosensors are used for detection of molecules and/or ions, such as protein, drug, DNA, RNA, hormone, glucose, insulin, enzyme, fungus, bacterium, etc., in a biological sample. The sensor can be used for diagnostic application, but for instance also drugs, either therapeutic or abuse, may be detected in for instance blood, urine and saliva.
摘要:
The invention relates to means for extracting magnetic particles (M) from a sample (S). The sample (S) is arranged adjacent to a liquid carrier (C), which is immiscible with it, in a configuration stable under the influence of gravity, and the magnetic particles (M) are moved by a magnetic field (B) from the sample (S) into the carrier (C). Preferably, the magnetic particles (M) are non-wetting with respect to the carrier (C) and will therefore form agglomerates in the carrier (C).
摘要:
Disclosed is a method of making gas bubbles in a liquid, the bubbles having substantially uniform size suitable for responding to ultrasound or other diagnostic tools. Gas (P2) is forced through one or more pores or nozzles, into the liquid (P1), the nozzles or pores being of substantially uniform diameter, the flow of the gas being controlled to thereby cause the formation of substantially monodisperse gas bubbles in the liquid. Moreover, an apparatus is disclosed for making a suspension of gas bubbles in a liquid of a size suitable for responding to ultrasound or other diagnostic tools. Said apparatus comprises means for forcing a gas through an array of nozzles or pores into the liquid, the nozzles or pores being of substantially uniform diameter, and first means for controlling; a flow parameter of the gas so that gas is suspended as substantially monodisperse gas bubbles in the liquid. Furthermore a kit for preparing a dispersion of gas bubbles of substantially uniform size suitable for ultrasound purposes, is disclosed.