摘要:
Phosphorus-free detergent compositions are provided. Detergent compositions including an aminocarboxylate, water conditioning agent, source of alkalinity and water beneficially do not require the use of additional surfactants and/or polymers to provide suitable detergency and prevent scale build-up on treated surfaces. The detergent compositions are used with a sanitizer to employ the phosphorus-free detergent compositions for use as low temperature ware wash detergents that beneficially reduce scale build-up. Methods of employing the phosphorus-free detergent compositions are also provided.
摘要:
Phosphorus-free detergent compositions are provided. Detergent compositions including an aminocarboxylate, water conditioning agent, source of alkalinity and water beneficially do not require the use of additional surfactants and/or polymers to provide suitable detergency and prevent scale build-up on treated surfaces. The detergent compositions are used with a sanitizer to employ the phosphorus-free detergent compositions for use as low temperature ware wash detergents that beneficially reduce scale build-up. Methods of employing the phosphorus-free detergent compositions are also provided.
摘要:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
摘要:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
摘要:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
摘要:
The invention relates to a highly alkaline or mildly alkaline detergent composition having enhanced cleaning properties. The detergent combines a source of alkalinity and a blend of nonionic surfactants that enhances cleaning starchy soils. The blend of nonionic surfactants preferably includes an alkyl polyglycoside surfactant and a silicon surfactant having a hydrophobic silicon group and a pendant hydrophilic group. Preferably, the blend of nonionic surfactants includes a surfactant having a hydrophobic group and an ethylene oxide residue containing group and a polymer additive. A method for removing soil from an article is provided.
摘要:
A coating composition, in both its uncrosslinked and crosslinked forms, for use in delivering a medicament from the surface of a medical device positioned in vivo. Once crosslinked, the coating composition provides a gel matrix adapted to contain the medicament in a form that permits the medicament to be released from the matrix in a prolonged, controlled, predictable and effective manner in vivo. A composition includes a polyether monomer, such as an alkoxy poly(alkylene glycol), a carboxylic acid-containing monomer, such as (meth)acrylic acid, a photoderivatized monomer, and a hydrophilic monomer such as acrylamide.
摘要:
A polybifunctional reagent is provided having a polymeric backbone, one or more pendent latent reactive (preferably photoreactive) moieties, and two or more pendent bioactive groups. The reagent can be activated to form a bulk material or can be brought into contact with the surface of a previously formed biomaterial and activated to form a coating. The pendent bioactive groups function by promoting the attachment of specific molecules or cells to the bulk material or coated surface. Bioactive groups can include proteins, peptides, carbohydrates, nucleic acids and other molecules that are capable of binding noncovalently to specific and complimentary portions of molecules or cells.
摘要:
An article (e.g., in the form of an implantable medical article) in the form of a support material bearing an intermediate layer consisting of a functional silicone polymer formulation, the intermediate layer having photoimmobilized thereon a target compound. In another aspect, a method of fabricating an article including the steps of providing a support material, applying an intermediate layer and photoimmobilizing a target compound onto the intermediate layer, and optionally, reforming the support material into a final desired article.
摘要:
A grafting reagent and related method of using the reagent to form a polymeric layer on a support surface, and particularly a porous support surface, in a manner that provides and/or preserves desired properties (such as porosity) of the surface. The reagent and method can be used to provide a thin, conformable, uniform, uncrosslinked coating having desired properties onto the surface of a preformed, and particularly a porous, polymeric substrate. The method includes the steps of a) providing a porous support surface, b) providing a nonpolymeric grafting reagent comprising a photoinitator group, c) providing one or more polymerizable monomers adapted to be contacted with the surface, in the presence of the grafting reagent, and to be polymerized upon activation of the photoinitiator; and d) applying the grafting reagent and monomer(s) to the surface in a manner, and under conditions, suitable to coat the surface with the grafting reagent and to cause the polymerization of monomers to the surface upon activation of the grafting reagent.