Abstract:
The present invention provides a method of manufacturing an organic thin film transistor (TFT), comprising: providing a substrate layer; providing a gate electrode layer; providing a dielectric material layer; providing an organic semiconductor (OSC) material layer; providing a source and drain electrode layer; and wherein one or more of the layers is deposited using a laser induced thermal imaging (LITI) process. Preferably the organic TFT is a bottom gate device and the source and drain electrodes are deposited on an organic semiconductor layer, or over a dielectric material layer using LITI. Further preferably a dopant material may be provided between the OSC material and the source and drain electrode layer, wherein the dopant material may also be deposited using LITI. Also preferably, wherein the dopant may be a charge neutral dopant such as substituted TCNQ or F4TCNQ.
Abstract:
This disclosure generally relates to improved structures for organic light emitting diodes (OLEDs), and more particularly to so-called top emitting OLEDs.
Abstract:
An optoelectronic display comprising a plurality of pixels, each pixel comprising a plurality of sub-pixels, wherein the optoelectronic display comprises a colour-forming layer which is patterned providing a plurality of discrete colour-forming regions in a two-dimensional array, and wherein an addressing array is provided for addressing the discrete colour-forming regions, at least some of the discrete colour-forming regions having portions which are separately addressable by the addressing array, each portion defining a sub-pixel of the optoelectronic display.
Abstract:
This invention relates to methods and apparatus for driving emissive, in particular organic light emitting diodes (OLED) displays using multi-line addressing (MLA) techniques. Embodiments of the invention are particularly suitable for use with so-called passive matrix OLED displays. A method of driving an emissive display, the display comprising a plurality of pixels each addressable by a row electrode and a column electrode, the method comprising: driving a plurality of said column electrodes with a first set of column drive signals; and driving two or more of said row electrodes with a first set of forward bias row drive signals at the same time as said column electrode driving with said column drive signals; then driving said plurality of column electrodes with a second and subsequent sets of column drive signals; and driving said two or more row electrodes with a second and subsequent sets of forward bias row drive signals at the same time as said column electrode driving with said second column drive signals.
Abstract:
A touch screen display device includes a plurality of display pixels for generating an image, emitters interspersed among the display pixels and emitting light, and detectors interspersed among the display pixels for detecting light. The light from the emitters is coupled into a transparent substrate to reach the front surface which transmits light incident at an angle smaller than a critical angle and which totally internally reflects light which is incident at an angle greater than the critical angle. The display device further includes processing means coupled to the emitters and detectors for detecting the light reaching each detector from different specific emitters and determining the light that is received by each detector that may be due to direct reflection from a near-field object, and the light that is totally internally reflected and which may be frustrated by a touching object.
Abstract:
An OLED lighting element comprises a substrate bearing an OLED structure extending laterally over said substrate and sandwiched between first and second electrode layers. The first electrode layer defines a plurality of electrically conductive tracks and said second electrode layer comprises a substantially continuous electrically conducting layer. The OLED lighting element has an electrical bus-bar connected to said electrically conductive tracks extending substantially completely along the or each lateral edge of said lighting element. The electrically conductive tracks run in a radial direction from a laterally central location within said lighting element towards said bus-bar along said lateral edges of said lighting element. A said track subdivides into a plurality of tracks with increasing distance from said central location. This arrangement makes more efficient use of the conductive tracks.
Abstract:
A method of fabricating a self-aligned top-gate organic transistor comprises depositing a photoresist material over the dielectric material, and exposing the photoresist material to irradiation through the substrate using the source and drain electrodes as a mask. The exposure defines a region for deposition of the gate electrode.
Abstract:
This invention generally relates to methods and apparatus for driving passive matrix displays, in particular OLED (Organic Light Emitting Diode) displays.A method of driving a passive matrix electroluminescent display, the display having a plurality of rows and columns of emissive elements addressed by respective row and column electrodes, the method comprising: addressing said row electrodes, one at a time; and driving a set of said column electrodes whilst addressing each said row electrode; wherein said column electrode driving comprises driving said column electrodes to determine ratios of column drive signals to one another for said set of column electrodes; and wherein the method further comprises controlling an overall drive for said set of column electrodes to control a drive to said emissive elements in each said addressed row.
Abstract:
A consumer electronic device (CED) having a display and including at least one light sensor for recalibrating said display at intervals, wherein said display and said at least one light sensor are mounted within different parts of a unitary housing such that when said CED is not in use said light sensor is able to monitor light from said display. Preferably the different parts of the unitary housing comprise two hinged parts, one mounting the display, the other at least a light sensing portion of the sensor.
Abstract:
This disclosure generally relates to improved structures for organic light emitting diodes (OLEDs), and more particularly to so-called top emitting OLEDs.