Abstract:
A three-dimensional (3D) measurement system, a method of measuring 3D coordinates, and a method of generating dense 3D data is provided. The method of measuring 3D coordinates includes using a first 3D measurement device and a second 3D measurement device in a cooperative manner is provided. The method includes acquiring a first set of 3D coordinates with the first 3D measurement device. The first set of 3D coordinates are transferred to the second 3D measurement device. A second set of 3D coordinates is acquired with the second 3D measurement device. The second set of 3D coordinates are registered to the first set of 3D coordinates in real-time while the second 3D measurement device is acquiring the second set of 3D coordinates.
Abstract:
A system and method of determining three-dimensional coordinates is provided. The method includes, with a projector, projecting onto an object a projection pattern that includes collection of object spots. With a first camera, a first image is captured that includes first-image spots. With a second camera, a second image is captured that includes second-image spots. Each first-image spot is divided into first-image spot rows. Each second-image spot is divided into second-image spot rows. Central values are determined for each first-image and second-image spot row. A correspondence is determined among first-image and second-image spot rows, the corresponding first-image and second-image spot rows being a spot-row image pair. Tach spot-row image pair having a corresponding object spot row on the object. Three-dimensional (3D) coordinates of each object spot row are determined on the central values of the corresponding spot-row image pairs. The 3D coordinates of the object spot rows are stored.
Abstract:
A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
Abstract:
A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. A deviation in a measured parameter from an expected parameter is determined. The calibration of the 3D measuring device may be changed when the deviation is outside of a predetermined threshold.
Abstract:
A method for scanning and obtaining three-dimensional (3D) coordinates is provided. The method includes providing a 3D measuring device having a projector, a first camera and a second camera. The method records images of a light pattern emitted by the projector onto an object. The 3D measuring device is moved from a first position and a second position along a second path. A gesture and a corresponding control function are determined based at least in part on the first position and the second position.
Abstract:
A method and system of correcting a point cloud is provided. The method includes selecting a region within the point cloud. At least two objects within the region are identified. The at least two objects are re-aligned. At least a portion of the point cloud is aligned based at least in part on the realignment of the at least two objects.
Abstract:
A method and system of correcting a point cloud is provided. The method includes selecting a region within the point cloud. At least two objects within the region are identified. The at least two objects are re-aligned. At least a portion of the point cloud is aligned based at least in part on the realignment of the at least two objects.
Abstract:
A method and system for inspecting an object is provided. The system includes a measurement device that measures 3D coordinates of points on a surface of the object. A display is coupled to the device and is sized to be carried by an operator. One or more processors cooperate with the measurement device, to perform a method comprising: determining 3D coordinates of the points while the object is being measured; aligning an electronic model of the object to the points while the object is being measured; determining a variance between the electronic model and the points while the object is being measured; and displaying on the display an indicator when the variance exceeds a threshold while the object is being measured.
Abstract:
A three-dimensional (3D) measurement system, a method of measuring 3D coordinates, and a method of generating dense 3D data is provided. The method of measuring 3D coordinates includes using a first 3D measurement device and a second 3D measurement device in a cooperative manner is provided. The method includes acquiring a first set of 3D coordinates with the first 3D measurement device. The first set of 3D coordinates are transferred to the second 3D measurement device. A second set of 3D coordinates is acquired with the second 3D measurement device. The second set of 3D coordinates are registered to the first set of 3D coordinates in real-time while the second 3D measurement device is acquiring the second set of 3D coordinates.
Abstract:
A three-dimensional (3D) measuring device and a method are provided. The measuring device includes a processor system including a scanner controller. A housing is provided with a 3D scanner that is coupled to the processor system. The scanner determining a first distance to a first object point and cooperating with the processor system to determine 3D coordinates of the first object point. The measuring device further includes a photogrammetry camera coupled to the housing, the photogrammetry camera having a lens and an image sensor that define a field of view. The photogrammetry camera is arranged to position the field of view at least partially in a shadow area, the shadow area being outside of the scan area.