Abstract:
A process for making styrene is disclosed that includes reacting toluene with a C1 source and a co-feed in the presence of a catalyst in a reactor to form a first product stream comprising styrene, ethylbenzene, carbon monoxide, and hydrogen; separating the hydrogen and carbon monoxide from the first product stream to form a second stream; separating the hydrogen from the second stream to form a third stream comprising hydrogen and a fourth stream comprising carbon monoxide; wherein the fourth stream is recycled to the reactor and forms at least a portion of the co-feed.
Abstract:
A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
Abstract:
A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
Abstract:
An oxidation catalyst for the oxidation of styrene to benzaldehyde and acetophenone, the oxidation catalyst comprising: a porous support; and an active phase comprising an oxygen activation metal comprising cobalt (Co), manganese (Mn), iron (Fe), molybdenum (Mo), or a combination thereof. A method of forming the oxidation catalyst, a method of forming an oxidation product comprising benzaldehyde and acetophenone by contacting the oxidation catalyst with styrene and air in an oxidation reactor, and a system and method for reducing the fouling in a process for the production of styrene by introducing an additive stream comprising at least a portion of the oxidation product into a stream comprising styrene and byproduct divinyl benzene (DVB) are also disclosed.
Abstract:
A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
Abstract:
A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
Abstract:
An oxidation catalyst for the oxidation of styrene to benzaldehyde and acetophenone, the oxidation catalyst comprising: a porous support; and an active phase comprising an oxygen activation metal comprising cobalt (Co), manganese (Mn), iron (Fe), molybdenum (Mo), or a combination thereof. A method of forming the oxidation catalyst, a method of forming an oxidation product comprising benzaldehyde and acetophenone by contacting the oxidation catalyst with styrene and air in an oxidation reactor, and a system and method for reducing the fouling in a process for the production of styrene by introducing an additive stream comprising at least a portion of the oxidation product into a stream comprising styrene and byproduct divinyl benzene (DVB) are also disclosed.
Abstract:
An apparatus and method for adding an alkali metal promoter into steam and contacting the solution with a dehydrogenation catalyst during a dehydrogenation reaction is disclosed. The apparatus has a first conduit capable of transporting an alkali metal salt solution and a second conduit in fluid communication with the first conduit, the second conduit capable of transporting steam so that the alkali metal salt is dissipated into the steam prior to entry into a dehydrogenation reaction zone.
Abstract:
A process is disclosed for making styrene by converting methanol to formaldehyde in a reactor then reacting the formaldehyde with toluene to form styrene in a separate reactor.
Abstract:
An alkylation catalyst having a zeolite catalyst component and a binder component providing mechanical support for the zeolite catalyst component is disclosed. The binder component is an ion-modified binder that can include metal ions selected from the group consisting of Co, Mn, Ti, Zr, V, Nb, K, Cs, Ga, B, P, Rb, Ag, Na, Cu, Mg, Fe, Mo, Ce, and combinations thereof The metal ions reduce the number of acid sites on the zeolite catalyst component. The metal ions can range from 0.1 to 50 wt % based on the total weight of the ion-modified binder. Optionally, the ion-modified binder is present in amounts ranging from 1 to 80 wt % based on the total weight of the catalyst.