Abstract:
The invention relates to cementitious or grout compositions and drilling fluids including reinforcement fibers and methods relating thereto. The cementitious or grout compositions include dry blend material and reinforcement fibers. Each of the fibers can have one or more of a pre-selected mean length, denier, diameter and aspect ratio to improve dispersion in dry blending the cementitious or grout compositions.
Abstract:
The invention relates to coating compositions, treated reinforced fibers, reinforced asphalt and portland cement concrete and methods for producing the same. The coating compositions include monomer, prepolymer or mixtures thereof, and graft initiator. The monomer and/or prepolymer include at least one functional group selected from the group consisting of hydroxyl, carboxyl, amino and ester. The graft initiator includes metallic salt.
Abstract:
The invention relates to cementitious or grout compositions and drilling fluids including reinforcement fibers and methods relating thereto. The cementitious or grout compositions include dry blend material and reinforcement fibers. Each of the fibers can have one or more of a pre-selected mean length, denier, diameter and aspect ratio to improve dispersion in dry blending the cementitious or grout compositions.
Abstract:
The invention relates to coating compositions, treated reinforced fibers, reinforced asphalt and portland cement concrete and methods for producing the same. The coating compositions include monomer, prepolymer or mixtures thereof, and graft initiator. The monomer and/or prepolymer include at least one functional group selected from the group consisting of hydroxyl, carboxyl, amino and ester. The graft initiator includes metallic salt.
Abstract:
The invention relates to composite reinforcing fibers infused or compounded with pulp fibers and/or nano-fibers. The composite reinforcing fibers are composed of polymer, e.g., polymer resin. The pulp fibers and/or nano-fibers impart improved tensile strength to the composite reinforcing fibers, as well as a resulting product formed by the fibers. The composite reinforcing fibers may be used in a variety of cementitious applications, wherein traditional reinforcing fibers are typically used.
Abstract:
The invention relates to cementitious or grout compositions and drilling fluids including reinforcement fibers and methods relating thereto. The cementitious or grout compositions include dry blend material and reinforcement fibers. Each of the fibers can have one or more of a pre-selected mean length, denier, diameter and aspect ratio to improve dispersion in dry blending the cementitious or grout compositions.
Abstract:
The invention relates to composite reinforcing fibers infused or compounded with pulp fibers and/or nano-fibers. The composite reinforcing fibers are composed of polymer, e.g., polymer resin. The pulp fibers and/or nano-fibers impart improved tensile strength to the composite reinforcing fibers, as well as a resulting product formed by the fibers. The composite reinforcing fibers may be used in a variety of cementitious applications, wherein traditional reinforcing fibers are typically used.
Abstract:
The invention relates to modified reinforcement fibers for use in a variety of applications. The modification includes crimping linear or straight reinforcement fibers to create a deformed or different shaped reinforcement fiber. Examples of the shaped fibers resulting from crimping include w-shaped, s-shaped, z-shaped and wedge-shaped.
Abstract:
The invention relates to cementitious or grout compositions and drilling fluids including reinforcement fibers and methods relating thereto. The cementitious or grout compositions include dry blend material and reinforcement fibers. Each of the fibers can have one or more of a pre-selected mean length, denier, diameter and aspect ratio to improve dispersion in dry blending the cementitious or grout compositions.
Abstract:
The invention relates to modified reinforcement fibers for use in a variety of applications. The modification includes crimping linear or straight reinforcement fibers to create a deformed or different shaped reinforcement fiber. Examples of the shaped fibers resulting from crimping include w-shaped, s-shaped, z-shaped and wedge-shaped.