摘要:
A photonic integrated circuit apparatus is disclosed. The apparatus includes a photonic chip and a lens array coupling element. The photonic chip includes a waveguide at a side edge surface of the photonic chip. The lens array coupling element is mounted on a top surface of the photonic chip and on the side edge surface. The coupling element includes a lens array that is configured to modify spot sizes of light traversing to or from the waveguide. The coupling element further includes an overhang on a side of the coupling element that opposes the lens array and that abuts the top surface of the photonic chip. The overhang includes a vertical stop surface that has a depth configured to horizontally align an edge of the waveguide with a focal length of the lens array and that vertically aligns focal points of the lens array with the edge of the waveguide.
摘要:
Processing for a silicon photonics wafer is provided. A silicon photonics wafer that includes an active silicon photonics layer, a thin buried oxide layer, and a silicon substrate is received. The thin buried oxide layer is located between the active silicon photonics layer and the silicon substrate. An electrical CMOS wafer that includes an active electrical layer is also received. The active silicon photonics layer of the silicon photonics wafer is flip chip bonded to the active electrical layer of the electrical CMOS wafer. The silicon substrate is removed exposing a backside surface of the thin buried oxide layer. A low-optical refractive index backing wafer is added to the exposed backside surface of the thin buried oxide layer. The low-optical refractive index backing wafer is a glass substrate or silicon substrate wafer. The silicon substrate wafer includes a thick oxide layer that is attached to the thin buried oxide layer.
摘要:
A photonic integrated circuit apparatus is disclosed. The apparatus includes a photonic chip and a lens array coupling element. The photonic chip includes a waveguide at a side edge surface of the photonic chip. The lens array coupling element is mounted on a top surface of the photonic chip and on the side edge surface. The coupling element includes a lens array that is configured to modify spot sizes of light traversing to or from the waveguide. The coupling element further includes an overhang on a side of the coupling element that opposes the lens array and that abuts the top surface of the photonic chip. The overhang includes a vertical stop surface that has a depth configured to horizontally align an edge of the waveguide with a focal length of the lens array and that vertically aligns focal points of the lens array with the edge of the waveguide.
摘要:
Processing for a silicon photonics wafer is provided. A silicon photonics wafer that includes an active silicon photonics layer, a thin buried oxide layer, and a silicon substrate is received. The thin buried oxide layer is located between the active silicon photonics layer and the silicon substrate. An electrical CMOS wafer that includes an active electrical layer is also received. The active silicon photonics layer of the silicon photonics wafer is flip chip bonded to the active electrical layer of the electrical CMOS wafer. The silicon substrate is removed exposing a backside surface of the thin buried oxide layer. A low-optical refractive index backing wafer is added to the exposed backside surface of the thin buried oxide layer. The low-optical refractive index backing wafer is a glass substrate or silicon substrate wafer. The silicon substrate wafer includes a thick oxide layer that is attached to the thin buried oxide layer.
摘要:
Designing a photonics switching system is provided. A photonic switch diode is designed to attain each performance metric in a plurality of performance metrics associated with a photonic switching system based on a weighted value corresponding to each of the plurality of performance metrics. A switch driver circuit is selected from a plurality of switch driver circuits for the photonic switching system. It is determined whether each performance metric associated with the photonic switching system meets or exceeds a threshold value corresponding to each of the plurality of performance metrics based on the designed photonic switch diode and the selected switch driver circuit. In response to determining that each performance metric associated with the photonic switching system meets or exceeds the threshold value corresponding to each of the performance metrics, the photonic switching system is designed using the designed photonic switch diode and the selected switch driver circuit.
摘要:
Designing a photonics switching system is provided. A photonic switch diode is designed to attain each performance metric in a plurality of performance metrics associated with a photonic switching system based on a weighted value corresponding to each of the plurality of performance metrics. A switch driver circuit is selected from a plurality of switch driver circuits for the photonic switching system. It is determined whether each performance metric associated with the photonic switching system meets or exceeds a threshold value corresponding to each of the plurality of performance metrics based on the photonic switch diode designed and the switch driver circuit selected. In response to determining that each performance metric associated with the photonic switching system meets or exceeds the threshold value corresponding to each of the performance metrics, the photonic switching system is designed using the photonic switch diode designed and the switch driver circuit selected.
摘要:
Designing a photonics switching system is provided. A photonic switch diode is designed to attain each performance metric in a plurality of performance metrics associated with a photonic switching system based on a weighted value corresponding to each of the plurality of performance metrics. A switch driver circuit is selected from a plurality of switch driver circuits for the photonic switching system. It is determined whether each performance metric associated with the photonic switching system meets or exceeds a threshold value corresponding to each of the plurality of performance metrics based on the designed photonic switch diode and the selected switch driver circuit. In response to determining that each performance metric associated with the photonic switching system meets or exceeds the threshold value corresponding to each of the performance metrics, the photonic switching system is designed using the designed photonic switch diode and the selected switch driver circuit.
摘要:
A method and structure for a modulator which includes a forward-biased diode optimized for power and area to perform a tuning function, and a reverse-biased diode optimized for speed to perform a modulation function.
摘要:
An optoelectronic integrated circuit for coupling light to or from an optical waveguide formed in an optical device layer in a near-normal angle to that layer. In an embodiment, the integrated circuit comprises a semiconductor body including a metal-dielectric stack, an optical device layer, a buried oxide layer and a semiconductor substrate arranged in series between first and second opposite sides of the semiconductor body. At least one optical waveguide is formed in the optical device layer for guiding light in a defined plane in that device layer. Diffractive coupling elements are disposed in the optical device layer to couple light from the waveguide toward the second surface of the semiconductor body at a near-normal angle to the defined plane in the optical device layer. In an embodiment, an optical fiber is positioned against the semiconductor body for receiving the light from the coupling elements.
摘要:
A method and structure for a modulator which includes a forward-biased diode optimized for power and area to perform a tuning function, and a reverse-biased diode optimized for speed to perform a modulation function.