Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

    公开(公告)号:US11929400B2

    公开(公告)日:2024-03-12

    申请号:US17360980

    申请日:2021-06-28

    摘要: A method of manufacturing a silicon carbide semiconductor device, including forming a first-conductivity-type region in a SiC semiconductor substrate, selectively forming a plurality of second-conductivity-type regions in the first-conductivity-type region, forming an interlayer insulating film covering the first-conductivity-type region and the second-conductivity-type regions, selectively removing the interlayer insulating film to form a plurality of openings exposing the second-conductivity-type regions, forming, in each opening, a layered metal film having a cap film stacked on an aluminum film, thermally diffusing aluminum atoms in the aluminum film to thereby form a plurality of second-conductivity-type high-concentration regions, removing the layered metal film, selectively removing the interlayer insulating film to form a contact hole, forming a first electrode by sequentially stacking a titanium film and a metal film containing aluminum on the first surface of the semiconductor substrate in the contact hole, and forming a second electrode on the second main surface of the semiconductor substrate.

    Semiconductor device
    3.
    发明授权

    公开(公告)号:US10008592B1

    公开(公告)日:2018-06-26

    申请号:US15800884

    申请日:2017-11-01

    摘要: Each first p+-type region is provided between adjacent trenches embedded with a MOS gate and is in contact with a p-type base region. Second p+-type regions face a bottom and bottom corner portions of the trenches in a depth direction. An n-type CS region is a current spread layer provided between the first p+-type regions and the second p+-type regions. The n-type CS region is provided only in an active region and an end thereof is positioned at a boundary of the active region and an edge termination region. Further, the n-type CS region extends to be flush with or farther inward than an outermost first p+-type region. An outermost p++-type contact region extends from a drop between the active region and the edge termination region to the edge termination region and extends beyond the n-type CS region.

    SEMICONDUCTOR DEVICE
    5.
    发明申请

    公开(公告)号:US20180350975A1

    公开(公告)日:2018-12-06

    申请号:US15961013

    申请日:2018-04-24

    IPC分类号: H01L29/78 H01L29/16 H01L29/10

    摘要: On a surface of an n-type silicon carbide epitaxial layer on an n+-type silicon carbide substrate, first and second p+-type base regions are formed in the n-type silicon carbide epitaxial layer, an n-type region is formed in the n-type silicon carbide epitaxial layer, a p-type base layer is formed on the n-type region, an n+-type source region and a p++-type contact region are formed in the p-type base layer, and a trench is formed to a position shallower than the second p+-type base region and penetrates the p-type base layer. A first sidewall angle of the trench at a position of the p-type base layer is 80° to 90° with respect to a main surface. A difference of the first sidewall angle and a second sidewall angle of the trench at a position deeper than a boundary of the p-type base layer and the n-type region is 1° to 25°.

    Method of manufacturing silicon carbide semiconductor device

    公开(公告)号:US11411093B2

    公开(公告)日:2022-08-09

    申请号:US17106974

    申请日:2020-11-30

    摘要: In a method of manufacturing a silicon carbide semiconductor device that is a silicon carbide diode having a JBS structure including a mixture of a Schottky junction and a pn junction and that maintains low forward voltage through a SBD structure and enhances surge current capability, nickel silicide films are formed in an oxide film by self-alignment by causing a semiconductor substrate and a metal material film to react with one another through two sessions of heat treatment including a low-temperature heat treatment and a high-temperature heat treatment, the metal material film including sequentially a first nickel film, an aluminum film, and a second nickel film, the first nickel film being in contact with an entire area of a connecting region of a FLR and p-type regions respectively exposed in openings of the oxide film.

    Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device

    公开(公告)号:US11309438B2

    公开(公告)日:2022-04-19

    申请号:US17108591

    申请日:2020-12-01

    摘要: A semiconductor device having, in a plan view, a termination region surrounding an active region. The semiconductor device includes a semiconductor substrate containing silicon carbide, a first-conductivity-type region provided in the semiconductor substrate at its first main surface, a plurality of first second-conductivity-type regions selectively formed in the semiconductor substrate at its first main surface, a plurality of silicide films respectively in ohmic contact with the first second-conductivity-type regions, a first electrode that is in contact with the silicide films to form ohmic regions, with the first second-conductivity-type regions to form non-operating regions, and with the first-conductivity-type region to form Schottky regions, a second electrode provided at a second main surface of the semiconductor substrate, and a second second-conductivity-type region provided in the termination region. The ohmic regions, the non-operating regions and the Schottky regions are formed in the active region in a striped pattern. The second second-conductivity-type region connects the ohmic regions and the non-operating regions.