Abstract:
Provided are a composition for an acoustic wave probe which includes polysiloxane that has a vinyl group and a phenyl group, polysiloxane that has two or more Si—H groups in a molecular chain, a titanium oxide particle, and a silica particle, in which at least one of the titanium oxide particle (C) or the silica particle (D) is a particle subjected to surface treatment; a silicone resin for an acoustic wave probe; an acoustic wave probe; an acoustic wave measurement apparatus; an ultrasound diagnostic apparatus; an ultrasound probe; a photoacoustic wave measurement apparatus; and an ultrasound endoscope.
Abstract:
In a photoacoustic measurement probe including an acoustic wave detector and an amplifier for amplifying a detection signal of a photoacoustic wave and a probe unit and a photoacoustic measurement apparatus having such a probe, heat is efficiently dissipated from the probe.In a probe having an acoustic wave detector and an amplifier, there are provided a first heat conductive member that is in contact with a part of a side plate of a housing and the amplifier to transfer heat generated by the amplifier to the side plate and a second heat conductive member that is in contact with a part different from the part of the side plate and the acoustic wave detector to transfer heat generated by the acoustic wave detector to the side plate.
Abstract:
In a photoacoustic measurement apparatus and a probe, artifacts due to photoacoustic waves generated in a surface portion of a subject are reduced without increasing the repetition period of photoacoustic measurement. A measurement light emitting unit emits measurement light toward a subject. An acoustic wave detector detects photoacoustic waves generated within the subject due to the measurement light. A correction light source emits correction light toward the subject. A light intensity detector detects reflected light generated by reflection of the correction light, which is emitted toward the subject, from the subject. In a probe, the correction light source and the light intensity detector are disposed between the measurement light emitting unit and the acoustic wave detector.
Abstract:
An X-ray imaging apparatus comprises a first grid, a second grid, and an X-ray image detector. The first grid passes X-rays emitted from an X-ray source and produces a first periodic pattern image. The second grid opposes the first grid. The second grid partly blocks the first periodic pattern image and produces a second periodic pattern image with moiré fringes. The X-ray image detector detects the second periodic pattern image and produces image data. The X-ray image detector has pixels arranged in two dimensions in X and Y directions. The M pixels arranged in the Y direction form one group. The group is shifted in the Y direction by the number of the pixels less than M each time. A phase of an intensity modulated signal, composed of pixel values of the pixels in the each shifted group, is calculated. Thereby a differential phase image is produced.
Abstract:
In a laser apparatus, transmission of vibration, which is generated in a portion that generates a cooling gas flow, to a laser unit is suppressed, and heat generated from the laser unit is efficiently dissipated. A laser unit is housed inside a box-shaped housing having a plurality of faces. A frame supports a laser unit with a first mount interposed therebetween inside the housing. The frame has a through-hole penetrating from one face side to the other face side. A blower fan generates a flow of cooling gas for cooling the laser unit. The blower fan is attached to, for example, a second housing so as to face the laser unit. The cooling gas moves through the through-hole of the frame between the blower fan and the laser unit.
Abstract:
An acoustic wave detector detects photoacoustic waves generated by absorbing measurement light emitted toward a subject, and reflected acoustic waves with respect to acoustic waves transmitted toward the subject. A preamplifier amplifies a detection signal output by the acoustic wave detector. A bypass unit is intended to output the detection signal without passing through the preamplifier. Controller causes the preamplifier to enter an operating state and selects a first path along which the detection signal is amplified by the preamplifier and then is input to the reception circuit as a signal path in a case where the photoacoustic waves are detected. The controller stops an amplification operation in the preamplifier and selects a second path along which the detection signal is input to the reception circuit via a bypass uni as the signal path in a case where reflected acoustic waves are detected.
Abstract:
A photoacoustic measurement device reducing artifacts caused by photoacoustic waves generated at a surface portion of a subject on which measurement light is incident, and a signal processing method thereof are obtained. A photoacoustic measurement device includes region discrimination unit that discriminates an artifact generation region and an artifact non-generation region in a photoacoustic image on the basis of a positional relationship between a light emitting portion and an acoustic wave detection portion, and filter unit that performs a first filtering process on a first photoacoustic wave detection signal corresponding to a photoacoustic image of the artifact non-generation region and performs a second filtering process on a second photoacoustic wave detection signal corresponding to a photoacoustic image of the artifact generation region. The second filtering process includes further reducing the photoacoustic wave detection signal in a frequency range lower than a predetermined frequency as compared with the first filtering process.
Abstract:
Disclosed are a probe for photoacoustic measurement which can suppress generation of artifacts obstructive to signal observation in a photoacoustic measurement, and a photoacoustic measurement apparatus including the same. The probe for photoacoustic measurement includes a light emission unit which emits measurement light to a subject, and an acoustic wave detection unit which detects a photoacoustic wave generated in the subject by the emission of measurement light. An emission end surface of the light emission unit is positioned to a side where the acoustic wave detection unit is located, with respect to a contact plane of the probe, and an optical axis at the emission end surface is inclined to a side opposite to the side on which the acoustic wave detection unit is positioned with respect to a normal direction of a detection surface of the acoustic wave detection unit.
Abstract:
An acoustic wave image generation apparatus for generating a photoacoustic image and a Doppler image is provided with a setting unit that sets a region of interest in the Doppler image, and a receiving-aperture controlling unit that sets receiving apertures of an acoustic wave detection probe for detecting photoacoustic waves to apertures smaller than all receiving apertures that the acoustic wave detection probe has, on the basis of a size of the region of interest, and for setting positions of the receiving apertures on the basis of a position of the set region of interest.
Abstract:
A photoacoustic measurement probe and a probe unit capable of preventing generation of artifacts in a photoacoustic measurement apparatus are obtained. In a photoacoustic measurement probe having a light emitting unit that emits measurement light toward a subject, an acoustic wave detection element that detects an acoustic wave emitted from a portion of the subject that has received the measurement light, and a housing which has a surface facing the subject at the time of use and in which the light emitting unit and the acoustic wave detection element are housed, at least one slit that is opened to the housing surface and that extends from the housing surface toward the inside of the housing is provided between the light emitting unit and the acoustic wave detection element.