Abstract:
A method for manufacturing a liquid crystal composition, the method including concurrently obtaining a liquid crystal compound represented by the formula (I) and a liquid crystal compound represented by the formula (II), by allowing a compound represented by the formula (III) to react with a carboxylic acid represented by the formula (IV) and a carboxylic acid represented by the formula (V), wherein P1 represents a polymerizable group; Sp1 represents a C3-12 divalent aliphatic group, etc; T1 represents a 1,4-phenylene group; T2 represents a divalent group having a single bond or cyclic structure; A1 represents —COO—, etc; A2 and A3 represents —OCO—, etc; X represents a hydrogen atom, C1-12 alkyl group, etc; Y1 and Y2 represents O, NR1 or S; R1 represents a hydrogen atom or methyl group; Formula (I) P1-Sp1-T1-A1-B-A2-T1-Sp1-P1; Formula (II) P1-Sp1-T1-A1-B-A3-T2-X; Formula (III) being HY1—B—Y2H; Formula (IV) P1-Sp1-T1-COOH; Formula (V) X-T2-COOH.
Abstract:
The present invention provides a viewing system capable of providing varying visual effects with a simpler configuration. In addition, the present invention also provides a display device, a stage installation, and a polymerizable liquid crystal composition. A viewing system according to the present invention is a viewing system for viewing an object to be irradiated including a light source unit, and the object to be irradiated with light emitted from the light source unit, in which the object to be irradiated includes a member, and a first circularly polarized light reflecting layer that is arranged on the member and reflects either right-handed circularly polarized light or left-handed circularly polarized light, the light source unit is capable of emitting light to be switchable between either right-handed circularly polarized light or left-handed circularly polarized light that is reflected by the first circularly polarized light reflecting layer or natural light, and circularly polarized light having a revolution direction opposite to a revolution direction of the circularly polarized light reflected by the first circularly polarized light reflecting layer, and color of the object to be irradiated is changed by switching light emitted from the light source unit.
Abstract:
The present invention provides an optical film exhibiting high alignment and good phase difference development in an oblique direction, and a polarizing plate and an image display device using the same. This optical film of the present invention has a substrate; and a phase difference layer which is provided on the substrate to be adjacent to the substrate, in which the phase difference layer is a layer formed by fixing vertical alignment of a liquid crystal compound having a polymerizable group included in a liquid crystal composition containing the liquid crystal compound and a polymer compound, a difference in δa value between the polymer compound and the substrate, which is calculated using three-dimensional SP values, is 3 or less, and a content of the polymer compound is less than 10 parts by mass with respect to 100 parts by mass of the liquid crystal compound.
Abstract:
An object of the present invention is to provide a polymer compound capable of improving adhesiveness between a hydrophobic member and a hydrophilic member. The polymer compound of the present invention is a polymer compound having a repeating unit represented by Formula (I) and a repeating unit represented by Formula (II).
Abstract:
The present invention provides a polymerizable composition having low birefringence which contains at least two types of polymerizable compounds represented by Formula (I): Q1-Sp1A-LmSp2-Q2 (I) in the formula, A represents a phenylene or a trans-1,4-cyclohexylene, L represents —OC(═O)—, —OC(═O)O—, and the like, m represents 3 to 12, Sp1 and Sp2 represent an alkylene of which —CH2— may be substituted with —O— or the like, and the like, and Q1 and Q2 represent a polymerizable group, and the like, in which when a number obtained by dividing the number of trans-1,4-cyclohexylenes represented by A by m is set to mc, the polymerizable compounds include a polymerizable compound satisfying 0.5
Abstract:
The present invention provides a polymerizable compound denoted by Formula (I): in the formula, Z1 and Z2 represent an arylene group, and the like, m represents 1 or 2, n represents an integer of 0 or 1, and when m is 2, n is 0, L1, L2, L3, and L4 each independently represent a linking group such as —C(═O)O— and —OC(═O)—, T3 represents -Sp4-R4, X represents —O—, and the like, r represents 1 to 4, Sp1, Sp2, Sp3, Sp4, and Sp5 each independently represent a single bond or a linking group, R1 and R2 each independently represent a polymerizable group, and R3, R4, and R5 each independently represent a hydrogen atom, a polymerizable group, or the like; a polymerizable composition containing the polymerizable compound described above; a film formed of the polymerizable composition described above; and a half mirror for displaying a projection image including the film described above.
Abstract:
An infrared ray cutting film having a transparent base, a near infrared ray absorbing layer containing a compound of Formula (1) with a maximum absorption wavelength of from 750 nm to 920 nm, and a near infrared ray reflection layer obtained by fixing a cholesteric liquid crystal phase is excellent in invisibility, robustness and high heat shielding performance. R1a and R1b represent alkyl, aryl or heteroaryl; at least one of R2 and R3 is an electron-withdrawing group, and R4 represents H, alkyl, aryl, heteroaryl, substituted boron, or a metal.
Abstract:
The present invention provides a heat ray cutting film comprising, on a substrate, at least two layers of a light reflecting layer X1 and a light reflecting layer X2 obtained by fixing cholesteric liquid crystalline phases, and an infrared ray absorbing layer comprising composite tungsten oxide microparticles, wherein the light reflecting layer X1 and the light reflecting layer X2 reflect lights circularly polarized in directions opposite to each other, reflection center wavelengths of the light reflecting layer X1 and the light reflecting layer X2 are within a range of 800 to 1100 nm and are substantially equal to each other, and total reflectivity of all light reflecting layers obtained by fixing cholesteric liquid crystalline phases is 80% or more. The heat ray cutting film of the present invention has high transparency and high heat shielding performance.
Abstract:
A liquid crystal composition containing an optically active compound represented by the following formula (1) and a liquid crystal compound shows a cholesteric liquid crystal phase having an excellent alignment state: K1 and K2 represent benzene, cyclohexane or cyclohexene; X1 to X12 represent hydrogen, halogen, alkyl, alkynyl, alkenyl or alkyloxy.
Abstract translation:含有下式(1)表示的光学活性化合物和液晶化合物的液晶组合物显示出具有优异取向状态的胆甾型液晶相:K1和K2表示苯,环己烷或环己烯; X 1至X 12表示氢,卤素,烷基,炔基,烯基或烷氧基。
Abstract:
The present invention provides a colored curable composition including a phthalocyanine pigment, a dioxazine pigment, a dye, a polymerization initiator, a polymerizable compound and a solvent; and a colored curable composition including a phthalocyanine pigment, a dye multimer having a polymerizable group and a group derived from a dipyrromethene dye, a polymerization initiator, a polymerizable compound and a solvent.