摘要:
A system and method of analyzing defects on a mask used in lithography are provided. A defect area image is provided as a first input, a set of lithography parameters is provided as a second input, and a set of metrology data is provided as a third input. The defect area image comprises an image of a portion of the mask. A simulated image can be generated in response to the first input. The simulated image comprises a simulation of an image that would be printed on a wafer if the wafer were exposed to a radiation source directed at the portion of the mask. The characteristics of the radiation source comprise the set of lithography parameters and the characteristics of the mask comprise the set of metrology data.
摘要:
A method and apparatus for inspecting a photolithography mask for defects is provided. The inspection method comprises providing a defect area image to an image simulator wherein the defect area image is an image of a portion of a photolithography mask, and providing a set of lithography parameters as a second input to the image simulator. The defect area image may be provided by an inspection tool which scans the photolithography mask for defects using a high resolution microscope and captures images of areas of the mask around identified potential defects. The image simulator generates a first simulated image in response to the defect area image and the set of lithography parameters. The first simulated image is a simulation of an image which would be printed on a wafer if the wafer were to be exposed to an illumination source directed through the portion of the mask. The method may also include providing a second simulated image which is a simulation of the wafer print of the portion of the design mask which corresponds to the portion represented by the defect area image. The method also provides for the comparison of the first and second simulated images in order to determine the printability of any identified potential defects on the photolithography mask. A method of determining the process window effect of any identified potential defects is also provided for.
摘要:
A method and apparatus for inspecting a photolithography mask for defects is provided. The inspection method comprises providing a defect area image to an image simulator wherein the defect area image is an image of a portion of a photolithography mask, and providing a set of lithography parameters as a second input to the image simulator. The defect area image may be provided by an inspection tool which scans the photolithography mask for defects using a high resolution microscope and captures images of areas of the mask around identified potential defects. The image simulator generates a first simulated image in response to the defect area image and the set of lithography parameters. The first simulated image is a simulation of an image which would be printed on a wafer if the wafer were to be exposed to an illumination source directed through the portion of the mask. The method may also include providing a second simulated image which is a simulation of the wafer print of the portion of the design mask which corresponds to the portion represented by the defect area image. The method also provides for the comparison of the first and second simulated images in order to determine the printability of any identified potential defects on the photolithography mask. A method of determining the process window effect of any identified potential defects is also provided for.
摘要:
A method and apparatus for performing an operation on hierarchically described integrated circuit layouts such that the original hierarchy of the layout is maintained is provided. The method comprises providing a hierarchically described layout as a first input and providing a particular set of operating criteria corresponding to the operation to be performed as a second input. The mask operation, which may include operations such as OPC and logical operations such as NOT and OR, is then performed on the layout in accordance with the particular set of operating criteria. A first program data comprising hierarchically configured correction data corresponding to the hierarchically described layout is then generated in response to the layout operation such that if the first program data were applied to the flattened layout an output comprising data representative of the result of performing the operation on the layout would be generated. As the first program data is maintained in a true hierarchical format, layouts which are operated upon in accordance with this method are able to be processed through conventional design rule checkers. Further, this method is capable of being applied to all types of layouts including light and dark field designs and phase shifting layouts.
摘要:
A method for performing design rule checking on OPC corrected or otherwise corrected designs is described. This method comprises accessing a corrected design and generating a simulated image. The simulated image corresponds to a simulation of an image which would be printed on a wafer if the wafer were exposed to an illumination source directed through the corrected design. The characteristics of the illumination source are determined by a set of lithography parameters. In creating the image, additional characteristics can be used to simulate portions of the fabrication process. However, what is important is that a resulting simulated image is created. The simulated image can then be used by the design rule checker. Importantly, the simulated image can be processed to reduce the number of vertices in the simulated image, relative to the number of vertices in the OPC corrected design layout. Also, the simulated image can be compared with an idea layout image, the results of which can then be used to reduce the amount of information that is needed to perform the design rule checking.
摘要:
A method and apparatus for performing an operation on hierarchically described integrated circuit layouts such that the original hierarchy of the layout is maintained is provided. The method comprises providing a hierarchically described layout as a first input and providing a particular set of operating criteria corresponding to the operation to be performed as a second input. The mask operation, which may include operations such as OPC and logical operations such as NOT and OR, is then performed on the layout in accordance with the particular set of operating criteria. A first program data comprising hierarchically configured correction data corresponding to the hierarchically described layout is then generated in response to the layout operation such that if the first program data were applied to the flattened layout an output comprising data representative of the result of performing the operation on the layout would be generated. As the first program data is maintained in a true hierarchical format, layouts which are operated upon in accordance with this method are able to be processed through conventional design rule checkers. Further, this method is capable of being applied to all types of layouts including light and dark field designs and phase shifting layouts.
摘要:
A method and apparatus for the correction of integrated circuit layouts for optical proximity effects which maintains the original true hierarchy of the original layout is provided. Also provided is a method and apparatus for the design rule checking of layouts which have been corrected for optical proximity effects. The OPC correction method comprises providing a hierarchically described integrated circuit layout as a first input, and a particular set of OPC correction criteria as a second input. The integrated circuit layout is then analyzed to identify features of the layout which meet the provided OPC correction criteria. After the areas on the mask which need correction have been identified, optical proximity correction data is generated in response to the particular set of correction criteria. Finally, a first program data is generated which stores the generated optical proximity correction data in a hierarchical structure that corresponds to the hierarchical structure of the integrated circuit layout. As the output correction data is maintained in true hierarchical format, layouts which are OPC corrected according to this method are able to be processed through conventional design rule checkers with no altering of the data.
摘要:
A method for manufacturing integrated circuits using opaque field, phase shift masking. One embodiment of the invention includes using a two mask process. The first mask is an opaque-field phase shift mask and the second mask is a single phase structure mask. A phase shift window is aligned with the opaque field using a phase shift overlap area on the opaque field. The phase shift mask primarily defines regions requiring phase shifting. The single phase structure mask primarily defines regions not requiring phase shifting. The single phase structure mask also prevents the erasure of the phase shifting regions and prevents the creation of undesirable artifact regions that would otherwise be created by the phase shift mask.
摘要:
A two mask process for small dimension features on an integrated circuit improves manufacturability and design tolerance. The first mask is an opaque-field phase shift mask and the second mask is a single phase structure mask. A phase shift window is aligned with the opaque field using a phase shift overlap area on the opaque field. The phase shift mask primarily defines regions requiring phase shifting. The single phase structure mask primarily defines regions not requiring phase shifting. The single phase structure mask also prevents the erasure of the phase shifting regions and prevents the creation of undesirable artifact regions that would otherwise be created by the phase shift mask.
摘要:
A method for manufacturing integrated circuits using opaque field, phase shift masking. One embodiment of the invention includes using a two mask process. The first mask is an opaque-field phase shift mask and the second mask is a single phase structure mask. A phase shift window is aligned with the opaque field using a phase shift overlap area on the opaque field. The phase shift mask primarily defines regions requiring phase shifting. The single phase structure mask primarily defines regions not requiring phase shifting. The single phase structure mask also prevents the erasure of the phase shifting regions and prevents the creation of undesirable artifact regions that would otherwise be created by the phase shift mask.