Abstract:
A phase splitter uses digital delay locked loop (DLL) to receive complementary input clock signals to generate a plurality of output signals having different phase shifts. When the DLL is locked, the delay resolution of the phase splitter is equal to two delay stages of the DLL.
Abstract:
A phase detector is comprised of two cross-coupled gates which are capable of phase discrimination down to a level of approximately 10 picoseconds. An arbiter circuit, responsive to the cross-coupled gates, generates mutually exclusive UP and DOWN pulse signals. The UP and DOWN pulse signals may be filtered and used to control the delay line of an all digital delay locked or phase locked loop.
Abstract:
A dual-loop digital delay locked loop (DLL) is provided. The DLL includes a coarse loop to produce a first delayed signal and provides a wide frequency lock range. The DLL further includes a fine loop connected to the coarse loop to produce a second delayed signal and provides a tight locking. This dual-loop architecture can provide robust operation and tight synchronization over a wide range of delay variations.
Abstract:
A phase detector is comprised of two cross-coupled gates which are capable of phase discrimination down to a level of approximately 10 picoseconds. An arbiter circuit, responsive to the cross-coupled gates, generates mutually exclusive UP and DOWN pulse signals. The UP and DOWN pulse signals may be filtered and used to control the delay line of an all digital delay locked or phase locked loop.
Abstract:
A phase splitter using digital delay locked loop (DLL) to receive complementary input clock signals to generate a plurality of output signals having different phase shifts. When the DLL is locked, the delay resolution of the phase splitter is equal to two delay stages of the DLL.
Abstract:
A dual-loop digital delay locked loop (DLL) is provided. The DLL includes a coarse loop to produce a first delayed signal and provides a wide frequency lock range. The DLL further includes a fine loop connected to the coarse loop to produce a second delayed signal and provides a tight locking. This dual-loop architecture can provide robust operation and tight synchronization over a wide range of delay variations.
Abstract:
A phase splitter uses digital delay locked loop (DLL) to receive complementary input clock signals to generate a plurality of output signals having different phase shifts. When the DLL is locked, the delay resolution of the phase splitter is equal to two delay stages of the DLL.
Abstract:
A phase splitter using digital delay locked loop (DLL) to receive complementary input clock signals to generate a plurality of output signals having different phase shifts. When the DLL is locked, the delay resolution of the phase splitter is equal to two delay stages of the DLL.
Abstract:
A phase detector is comprised of two cross-coupled gates which are capable of phase discrimination down to a level of approximately 10 picoseconds. An arbiter circuit, responsive to the cross-coupled gates, generates mutually exclusive UP and DOWN pulse signals. The UP and DOWN pulse signals may be filtered and used to control the delay line of an all digital delay locked or phase locked loop. Methods of operation are also disclosed.