摘要:
A method of load balancing zero-bandwidth Traffic Engineering Label Switching Paths (0-bw TE LSPs) in a communication network having a plurality of network nodes and a plurality of network links connecting the nodes. The method may be implemented in a centralized Path Computation Element (PCE) or in an ingress router. Each equal cost path from a source node to a destination node is identified from network topology information. A probability of selecting each equal cost shortest path is determined using an iterative Global Load balancing Algorithm (GLA) and each 0-bw TE LSP is provisioned with a specific probability such that the 0-bw TE LSPs are uniformly distributed over all network links.
摘要翻译:在具有多个网络节点的通信网络和连接节点的多个网络链路的负载平衡零带宽流量工程标签交换路径(0-bw TE LSP)的方法。 该方法可以在集中式路径计算元件(PCE)或入口路由器中实现。 从源节点到目的地节点的每个相等的成本路径是从网络拓扑信息中识别出来的。 使用迭代全局负载平衡算法(GLA)确定选择每个相等成本最短路径的概率,并且以特定概率提供每个0-bw TE LSP,使得0-bw TE LSP均匀地分布在所有网络链路上。
摘要:
A method of load balancing zero-bandwidth Traffic Engineering Label Switching Paths (0-bw TE LSPs) in a communication network having a plurality of network nodes and a plurality of network links connecting the nodes. The method may be implemented in a centralized Path Computation Element (PCE) or in an ingress router. Each equal cost path from a source node to a destination node is identified from network topology information. A probability of selecting each equal cost shortest path is determined using an iterative Global Load balancing Algorithm (GLA) and each 0-bw TE LSP is provisioned with a specific probability such that the 0-bw TE LSPs are uniformly distributed over all network links.
摘要翻译:在具有多个网络节点的通信网络和连接节点的多个网络链路的负载平衡零带宽流量工程标签交换路径(0-bw TE LSP)的方法。 该方法可以在集中式路径计算元件(PCE)或入口路由器中实现。 从源节点到目的地节点的每个相等的成本路径是从网络拓扑信息中识别出来的。 使用迭代全局负载平衡算法(GLA)确定选择每个相等成本最短路径的概率,并且以特定概率提供每个0-bw TE LSP,使得0-bw TE LSP均匀地分布在所有网络链路上。
摘要:
A system, method, and node for a Routing Controller (RC) to obtain from a Path Computation Element (PCE), network resource path metrics across a plurality of domains in a communication network in which each domain includes a plurality of Border Nodes (BNs). The RC sends to the PCE, a first message requesting a first path computation between each pair of BNs. The first message contains a maximum metric-value that a path computation must not exceed for a Path Computation Client (PCC) to consider the path computation acceptable. The RC then sends a second message requesting the PCE to compute a subsequent path computation for each BN pair for which the first path computation did not exceed the maximum metric-value. The second message contains a minimum metric-value that a path metric must exceed for the PCC to consider the path metric acceptable. The RC then receives the computed subsequent path computation.
摘要:
A system, method, and node for a Routing Controller (RC) to obtain from a Path Computation Element (PCE), network resource path metrics across a plurality of domains in a communication network in which each domain includes a plurality of Border Nodes (BNs). The RC sends to the PCE, a first message requesting a first path computation between each pair of BNs. The first message contains a maximum metric-value that a path computation must not exceed for a Path Computation Client (PCC) to consider the path computation acceptable. The RC then sends a second message requesting the PCE to compute a subsequent path computation for each BN pair for which the first path computation did not exceed the maximum metric-value. The second message contains a minimum metric-value that a path metric must exceed for the PCC to consider the path metric acceptable. The RC then receives the computed subsequent path computation.
摘要:
In a multi-domain network each domain, or Autonomous System (AS), has a route calculation entity (PCE A) which is responsible for computing paths between domains on behalf of clients. The route calculation entity (PCE A) sends advertisement messages to a route calculation entity (PCE B) in another domain. The advertisement message carries at least one of: inter-domain resource information and aggregated intra-domain information, such as simplified topology information or cumulative traffic engineering (TE) metrics. The inter-domain resource information can be inter-domain route or reachability information which is normally discarded by a routing protocol such as the Border Gateway Protocol (BGP) and can include inter-domain Traffic Engineering (TE) information such as reservable bandwidth.
摘要:
A method of restoration for an optical network, the network comprising a plurality of nodes (40, 50) interconnected with each other by optical links (130), a subset of the nodes (40) each comprising a regenerator, the method comprising: storing (160) a quality of transmission parameter and a regenerator availability at each of the plurality of nodes (40, 50); notifying (170) a branch node (110) in response to detecting a failure (140) within a link (130) forming part of the path between a source node (20) and a destination node (30), wherein the branch node (110) is the neighbouring upstream node (40, 50) upstream of the link failure (140), the branch node (110) having a regenerator; the branch node (110) computing (190) a restoration segment (100) to a merge node (120) having a regenerator which is a neighbouring downstream node which is downstream of the link failure (140), the restoration path (100) being based on the quality of transmission parameter and regenerator availability information; restoring (180) the path between the source node (20) and the destination node (30) using the restoration segment (100).
摘要:
A method of restoration for an optical network, the network comprising a plurality of nodes (40, 50) interconnected with each other by optical links (130), a subset of the nodes (40) each comprising a regenerator, the method comprising: storing 160) a quality of transmission parameter and a regenerator availability at each of the plurality of nodes (40, 50); notifying (170) a branch node (110) in response to detecting a failure (140) within a link (130) forming part of the path between a source node (20) and a destination node (30), wherein the branch node (110) is the neighbouring upstream node (40, 50) upstream of the link failure (140), the branch node (110) having a regenerator; the branch node (110) computing (190) a restoration segment (100) to a merge node (120) having a regenerator which is a neighbouring downstream node which is downstream of the link failure (140), the restoration path (100) being based on the quality of transmission parameter and regenerator availability information; restoring (180) the path between the source node (20) and the destination node (30) using the restoration segment (100).
摘要:
A path computation client (PCC) can request a path computation element (PCE) to compute a path across a wavelength switched optical network. PCC sends a request which identifies end nodes. The end nodes can support a plurality of possible values of a transmission parameter, such as modulation format or Forward Error Correction (FEC) type. The PCE computes a path between the end nodes and sends a reply to the PCC. The reply identifies the path between the end nodes and identifies a selected value of the transmission parameter for the computed path. The reply can comprise a spectrum assignment for the path. The reply can be a PCE Communication Protocol (PCEP) Reply message.
摘要:
A path computation client (PCC) can request a path computation element (PCE) to compute a path across a wavelength switched optical network. PCC sends a request which identifies end nodes. The end nodes can support a plurality of possible values of a transmission parameter, such as modulation format or Forward Error Correction (FEC) type. The PCE computes a path between the end nodes and sends a reply to the PCC. The reply identifies the path between the end nodes and identifies a selected value of the transmission parameter for the computed path. The reply can comprise a spectrum assignment for the path. The reply can be a PCE Communication Protocol (PCEP) Reply message.
摘要:
Slots (311) for transmission of data of a particular transmission type over an optical network are allocated by selecting a first available slot (313_2) at an ordinal position corresponding to a multiple of n and allocating the selected first available slot and the next n−1 consecutive slots (313_4, 313_5) from the selected first available slot (313_3), if all n−1 consecutive slots (313_4, 313_5) are available, for transmission of data of the particular transmission type. The data is transmitted over an optical network comprising a plurality of nodes (305, 327) interconnected by optical sections (301, 309, 329, 331) the nodes (305, 327) supporting a plurality of transmission types, wherein transmission of data of the particular transmission type requires a predetermined number n of consecutive slots. Alternatively the slots may be divided in groups (333, 335, 337) and slots are allocated to a group in which all slots are available.