摘要:
An integrated circuit having a microprocessor core interfaced to large power transistors is described. This integrated circuit provides the capability to intelligently control and drive loads requiring currents exceeding 250 milli amps. The large power transistors are built in a technology compatible with the microprocessor core technology resulting in a more readily manufacturable circuit. The microprocessor core is layed out in a manner which provides the greatest distance between the most heat sensitive microprocessor core circuits and the power devices. On chip temperature sensing and feedback is provided for junction temperature monitoring and control.
摘要:
An integrated circuit having a microprocessor core interfaced to large power transistors is described. This integrated circuit provides the capability to intelligently control and drive loads requiring currents exceeding 250 milli amps. The large power transistors are built in a technology compatible with the microprocessor core technology resulting in a more readily manufacturable circuit. The microprocessor core is layed out in a manner which provides the greatest distance between the most heat sensitive microprocessor core circuits and the power devices. On chip temperature sensing and feedback is provided for junction temperature monitoring and control.
摘要:
An integrated circuit having a microprocessor core interfaced to large power transistors is described. This integrated circuit provides the capability to intelligently control and drive loads requiring currents exceeding 250 milli amps. The large power transistors are built in a technology compatible with the microprocessor core technology resulting in a more readily manufacturable circuit. The microprocessor core is layed out in a manner which provides the greatest distance between the most heat sensitive microprocessor core circuits and the power devices. On chip temperature sensing and feedback is provided for junction temperature monitoring and control.
摘要:
A voltage regulator circuit which provides a regulated output voltage by regulating output current at an output terminal is provided. The voltage regulator circuit operates in response to a clocked control signal. The regulated output voltage and a delayed signal of the regulated output voltage are both used to bias a selected one of series-connected transistors which sink current from the output terminal in response to the value of the output voltage and the frequency of the clocked control signal. A second control signal is provided for enabling or disabling the voltage regulator circuit.
摘要:
A standard cell array is disclosed having improved device isolation, customized metal routing under power busses, a gate array core cell having improved internal routing channels, and shared power busses. A fake gate is located adjacent a source of drain of a transistor within each cell, and is coupled to a supply voltage for isolating the transistors within each cell. Additional metallization strips partially overlap and extend between adjacent rows and columns, respectively, of the core cells for providing supply voltages thereto. Further metallization strips for conducting signals overlie the internal portion of the core cell and extend the entire length of the row or column of core cells.
摘要:
An on chip test system for arrays is provided that includes self test and maintenance operation while allowing for both synchronous and pipeline modes of normal operation. The system is integrated on a chip that includes a plurality of inputs and a plurality of outputs. A plurality of gates are coupled between the plurality of inputs and outputs wherein input signals may be transmitted asynchronously to the gates and output signals may be transmitted asynchronously to the outputs. An input shift register is coupled between each of the inputs and the gates for synchronously transmitting input signals, and an output shift register is coupled between the gates and each of the outputs for synchronously transmitting output signals. A control logic circuit is coupled to the plurality of gates, the input shift registers, and the output shift registers for selecting the systems mode of operation. A comparator circuit is coupled to the output shift registers for comparing said output signals with expected signals.