Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
New high density microfluidic devices and methods provide precise metering of fluid volumes and efficient mixing of the metered volumes. A first solution is introduced into a segment of a flow channel in fluidic communication with a reaction chamber. A second solution is flowed through the segment so that the first solution is displaced into the reaction chamber, and a volume of the second solution enters the chamber. The chamber can then be isolated and reactions within the chamber can be initiated and/or detected. High throughput methods of genetic analysis can be carried out with greater accuracy than previously available.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.