摘要:
A system and method for controlling resistivity uniformity in a Copper trench structure by controlling the CMP process is provided. A preferred embodiment comprises a system and a method in which a plurality of CMP process recipes may be created comprising at least a slurry arm position. A set of metrological data for at least one layer of the semiconductor substrate may be estimated, and an optimum CMP process recipe may be selected based on the set of metrological data. The optimum CMP process recipe may be implemented on the semiconductor substrate.
摘要:
A method to enable wafer result prediction includes collecting manufacturing data from various semiconductor manufacturing tools and metrology tools; choosing key parameters using an autokey method based on the manufacturing data; building a virtual metrology based on the key parameters; and predicting wafer results using the virtual metrology.
摘要:
A system and method for controlling resistivity uniformity in a Copper trench structure by controlling the CMP process is provided. A preferred embodiment comprises a system and a method in which a plurality of CMP process recipes may be created comprising at least a slurry arm position. A set of metrological data for at least one layer of the semiconductor substrate may be estimated, and an optimum CMP process recipe may be selected based on the set of metrological data. The optimum CMP process recipe may be implemented on the semiconductor substrate.
摘要:
A method for improving within-wafer uniformity is provided. The method includes forming an electrical component by a first process step and a second process step, wherein the electrical component has a target electrical parameter. The method includes providing a first plurality of production tools for performing the first process step; providing a second plurality of production tools for performing the second process step; providing a wafer; performing the first process step on the wafer using one of the first plurality of production tools; and selecting a first route including a first production tool from the second plurality of production tools. A within-wafer uniformity of the target electrical parameter on the wafer manufactured by the first route is greater than a second route including a second production tool in the second plurality of production tools.
摘要:
A method for improving within-wafer uniformity is provided. The method includes forming an electrical component by a first process step and a second process step, wherein the electrical component has a target electrical parameter. The method includes providing a first plurality of production tools for performing the first process step; providing a second plurality of production tools for performing the second process step; providing a wafer; performing the first process step on the wafer using one of the first plurality of production tools; and selecting a first route including a first production tool from the second plurality of production tools. A within-wafer uniformity of the target electrical parameter on the wafer manufactured by the first route is greater than a second route including a second production tool in the second plurality of production tools.
摘要:
A method of monitoring uniformity of a wafer is provided. A wafer parameter is selected. Manufacturing data is collected. The manufacturing data includes measurements of the selected wafer parameter. An average offset profile of the wafer parameter for a first and second wafer is determined using the manufacturing data. The first and second wafer are associated with a product type and were processed by a processing tool. An offset profile for a third wafer is predicted for a wafer using the average offset profile. The third wafer is associated with the product type and was processed by the processing tool.
摘要:
A method of monitoring uniformity of a wafer is provided. A wafer parameter is selected. Manufacturing data is collected. The manufacturing data includes measurements of the selected wafer parameter. An average offset profile of the wafer parameter for a first and second wafer is determined using the manufacturing data. The first and second wafer are associated with a product type and were processed by a processing tool. An offset profile for a third wafer is predicted for a wafer using the average offset profile. The third wafer is associated with the product type and was processed by the processing tool.
摘要:
A method to enable wafer result prediction includes collecting manufacturing data from various semiconductor manufacturing tools and metrology tools; choosing key parameters using an autokey method based on the manufacturing data; building a virtual metrology based on the key parameters; and predicting wafer results using the virtual metrology.
摘要:
Embodiments of the present invention relate to a method for a near non-adaptive virtual metrology for wafer processing control. In accordance with an embodiment of the present invention, a method for processing control comprises diagnosing a chamber of a processing tool that processes a wafer to identify a key chamber parameter, and controlling the chamber based on the key chamber parameter if the key chamber parameter can be controlled, or compensating a prediction model by changing to a secondary prediction model if the key chamber parameter cannot be sufficiently controlled.
摘要:
Embodiments of the present invention relate to a method for a near non-adaptive virtual metrology for wafer processing control. In accordance with an embodiment of the present invention, a method for processing control comprises diagnosing a chamber of a processing tool that processes a wafer to identify a key chamber parameter, and controlling the chamber based on the key chamber parameter if the key chamber parameter can be controlled, or compensating a prediction model by changing to a secondary prediction model if the key chamber parameter cannot be sufficiently controlled.