摘要:
The present disclosure is directed toward solutions, transparent films prepared from aromatic copolyamides, and a display element, an optical element or an illumination element using the solutions and/or the films. The copolyamides, which contain pendant carboxylic groups are solution cast into films using cresol, xylene, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), or butyl cellosolve or other solvents or mixed solvent which has more than two solvents. When the films are thermally cured at temperatures near the copolymer glass transition temperature, after curing, the polymer films display transmittances >80% from 400 to 750 nm, have coefficients of thermal expansion of less than 20 ppm, and are solvent resistant.
摘要:
The present disclosure is directed toward solutions, transparent films prepared from aromatic copolyamides, and a display element, an optical element or an illumination element using the solutions and/or the films. The copolyamides, which contain pendant carboxylic groups are solution cast into films using cresol, xylene, N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP), dimethylsulfoxide (DMSO), or butyl cellosolve or other solvents or mixed solvent which has more than two solvents. When the films are thermally cured at temperatures near the copolymer glass transition temperature, after curing, the polymer films display transmittances >80% from 400 to 750 nm, have coefficients of thermal expansion of less than 20 ppm, and are solvent resistant.
摘要:
Films with optical transmittance of >80% between 400 and 750 nm and with coefficient of thermal expansion less than 20 ppm/° C. are prepared from aromatic polyamides that are soluble in polar organic solvents yet have glass transition temperatures >300° C. The films are crosslinked in the solid state by heating at elevated temperatures for short periods of time in the presence of multifunctional epoxides. Surprisingly, the optical and thermal properties of the films do not change significantly during the curing process. The temperature required for the crosslinking process to take place can be reduced by the presence of a few free, pendant carboxyl groups along the polyamide backbones. The films are useful as flexible substrates for electronic displays and photovoltaic devices.
摘要:
The present invention is directed toward transparent films prepared from soluble aromatic copolyamides with glass transition temperatures greater than 300 C. The copolyamides, which contain pendant carboxylic groups are solution cast into films using N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP), or other polar solvents. The films are thermally cured at temperatures near the copolymer glass transition temperature. After curing, the polymer films display transmittances >80% from 400 to 750 nm, have coefficients of thermal expansion of less than 20 ppm, and are solvent resistant. The films are useful as flexible substrates for microelectronic devices.
摘要:
A class of solvent resistant, flexible copolyimide substrates having high optical transparency (>80% from 400 to 750 nm) that is retained after brief exposure to 300° C., near-zero birefringence (
摘要:
A non-stretched, negative birefringent copolyester film, which has been solution cast from toluene and/or MIBK and mixtures of these with other solvents on a substrate, and has a Δn⊥ of >0.02 and a DP between 0.90 and 1.10.
摘要:
A negative birefringence film prepared from a poly(aryletherimide) which is the reaction product of a dianhydride and a diamine, where the dianhydride is BisADA, ODPA, BPEDA, BPQDA, BPDA, or 6FDA, alone or a mixture with one or more of: BPDA, 6FDA, BisADA, Bis-AF-DA, BPQDA, BPEDA, and ODPA; and where the diamine is 4,4′-diaminophenyl ether, 2-trifluoromethyl-4,4′-diaminophenyl ether, 2-trifluoromethyl-2′-methyl-4,4′-diaminophenyl ether, 1,4-bis(4-aminophenoxy)benzene, 4,4′-bis(4-aminophenoxy)biphenyl, 4,4′-bis(3-aminophenoxy)biphenyl, 4,4′-bis(4-aminophenoxy)terphenyl, 4,4′-bis(3-aminophenoxy)terphenyl, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]1,1,1,3,3,3-hexafluoropropane, 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, 2,2′-bis(trifluoromethyl)-4,4′-diaminophenyl ether (6FODA), 4,4′-bis(4-amino-2-trifluoromethylphenoxy)biphenyl (6FOBDA), 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-3,3′,5,5′-tetramethylbiphenyl, 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-3,3′,5,5′-tetra(tert-butyl)biphenyl, 4,4′-bis(3-amino-trifluoromethylphenoxy)biphenyl, 4,4′-bis(4-amino-2-trifluoromethylphenoxy)terphenyl, 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)-phenyl]propane, 2,2-bis[4-(4-amino-2-trifluoromethylphenoxy)-phenyl]1,1,1,3,3,3-hexafluoropropane, 1,4-bis(2-trifluoromethyl-4-aminophenoxy)-2,5-di(t-butyl)benzene (BTBDA), 3,3′-dimethyl-4,4′-diamino biphenyl (OTOL), 1,4-bis(2-trifluoromethyl-4-aminophenoxy)-2-t-butylbenzene, or mixtures thereof and wherein when a mixture of dianhydrides is present, they are present in a molar amount of between 99 to 1 (99:1) and 1 to 99 (1:99), and the film has a negative birefringence greater than 0.01, at a thickness of less than 15 μm, when the poly(aryletherimide) is solution cast or coated onto a substrate.
摘要:
A class of soluble poly(aryletherimides) (PAEIs) having flexible backbones, useful in the manufacture of polymeric optical films are disclosed. The poly(aryletherimides) are dissolved in organic solvents, such as ketones and ketone solvent mixtures and coated on variety of substrates such as triacetyl cellulose (TAC), to form clear thin-layer films which display negative birefringence. The thin films can serve as compensation layers in liquid crystal displays (LCDs), and can be combined with other types of optical films, such as polarizers, brightness enhancement films, or other compensation films, to from multi-layered films that are especially useful in the manufacture of LCDs.
摘要:
A negative birefringence film prepared from a poly(aryletherimide) which is the reaction product of a dianhydride and a diamine, where the dianhydride is 4,4′-[4,4′-(p-phenyleneoxy)isopropylidene]bis(phthalic anhydride) (BisADA), bis(3,4-dicarboxyphenyl)ether dianhydride (ODPA), 4,4′-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride (BPEDA), 1,4-bis(3,4-dicarboxyphenyloxy)phenyl dianhydride (BPQDA), 3,3′,4,4′-tetracarboxylicbiphenyl dianhydride (BPDA), or 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride (6FDA), alone or a mixture with one or more of: 3,3′,4,4′-tetracarboxylicbiphenyl dianhydride (BPDA), 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropane dianhydride (6FDA); and where the diamine is 1,4-bis(2-trifluoromethyl-4-aminophenoxy)-2,5-di(t-butyl)benzene (BTBDA), 3,3′-dimethyl-4,4′-diamino biphenyl (OTOL), or mixtures thereof and wherein when a mixture of dianhydrides is present, they are present in a molar amount of between 99 to 1 (99:1) and 1 to 99 (1:99), and the film has a negative birefringence greater than 0.01, at a thickness of less than 15 μm, when the poly(aryletherimide) is solution cast or coated onto a substrate.
摘要:
A class of soluble poly(aryletherimides) (PAEIs) having flexible backbones, useful in the manufacture of polymeric optical films are disclosed. The poly(aryletherimides) are dissolved in organic solvents, such as ketones and ketone solvent mixtures and coated on variety of substrates such as triacetyl cellulose (TAC), to form clear thin-layer films which display negative birefringence. The thin films can serve as compensation layers in liquid crystal displays (LCDs), and can be combined with other types of optical films, such as polarizers, brightness enhancement films, or other compensation films, to from multi-layered films that are especially useful in the manufacture of LCDs.