摘要:
The invention relates to a method of identifying a plant disease-resistance gene that includes the steps of (a) providing a plant tissue sample; (b)introducing by biolistic transformation into the plant tissue sample a candidate plant disease-resistance gene; (c) expressing the candidate plant disease-resistance gene within the plant tissue sample; and (d) determining whether the plant tissue sample exhibits a disease-resistance response, whereby a response identifies a plant disease-resistance gene.
摘要:
Disclosed is substantially pure DNA encoding an Arabidopsis thaliana Rps2 polypeptide; substantially pure Rps2 polypeptide; and methods of using such DNA to express the Rps2 polypeptide in plant cells and whole plants to provide, in transgenic plants, disease resistance to pathogens. Also disclosed are conserved regions characteristic of the RPS family and primers and probes for the identification and isolation of additional RPS disease-resistance genes.
摘要:
Disclosed is substantially pure DNA encoding an Arabidopsis thaliana Rps2 polypeptide, substantially pure Rps2 polyneptide; and methods of using such DNA to express the Rps2 polypeptide in plant cells and whole plants to provide, in transgenic plants, disease resistance to pathogens. Also disclosed are conserved regions characteristic of the RPS family and primers and probes for the identification and isolation of additional RPS disease-resistance genes.
摘要:
Disclosed is substantially pure DNA encoding an Arabidopsis thaliana Rps2 polypeptide; substantially pure Rps2 polypeptide; and methods of using such DNA to express the Rps2 polypeptide in plant cells and whole plants to provide, in transgenic plants, disease resistance to pathogens. Also disclosed are conserved regions characteristic of the RPS family and primers and probes for the identification and isolation of additional RPS disease-resistance genes.
摘要:
A method for identification of gene specific hybridization polymorphisms (GSHPs) and their use is presented. The method involves the steps of a) global screening for hybridization polymorphisms using microarray; b) enzyme mediated genome complexity reduction; c) enzyme mediated differential signal amplification and noise reduction; d) data extraction and GSHP identification; and e) use of GSHPs in high throughput screening. The method is useful in a particular application for the fingerprinting of maize exotic germplasm and the identification of new and commercially useful loci therein.
摘要:
The present invention pertains to isolated nucleic acid molecules comprising nucleotide sequences isolated from Oryza sativa that encode RARI proteins involved in disease resistance, and recombinant vectors comprising said nucleotide sequences.
摘要:
The present invention pertains to transgenic plants comprising nucleic acid molecules comprising nucleotide sequences that encode RAR1 proteins involved in disease resistance, and the RAR1 polypeptides. The invention particularly relates to methods of altering the expressing nucleic acid molecules encoding RAR1 proteins in transgenic plants to alter the level disease resistance, and to transgenic plants, progeny and seed therefrom, having altered enhanced disease resistance. The invention further relates to methods of enhancing expression of R resistance genes, disease resistance signal transduction genes, genes involved in mediating disease resistance or involved in the synthesis of molecules mediating disease resistance. The invention also relates to methods of regulating the expression of other coding sequences of interest by increasing the expression of the nucleic acid molecules of the invention.
摘要:
Homologues of the Arabidopsis NIM1 gene, which is involved in the signal transduction cascade leading to systemic acquired resistance (SAR), are isolated from monocotyledonous crops such as Triticum aestivum (wheat) and Oryza sativa (rice). The invention further concerns transformation vectors and processes for expressing the monocotyledonous NIM1 homologues in transgenic plants to increase SAR gene expression and enhance broad spectrum disease resistance
摘要:
The present invention discloses trichothecene-resistant transgenic plants, plant tissues, plant seeds, and plant cells comprising a heterologous polynucleotide encoding a gene product having tricothecene resistance activity that thereby confers trichothecene resistance to the transgenic plants, plant tissues, plant seeds, and plant cells. Trichothecene resistance activity, as used herein, refers to an activity that reduces or inhibits the phytotoxicity of a trichothecene, particularly to a fungus and/or plant. In a particular embodiment, trichothecene resistance activity refers to an activity that transfers an acetate to the C-3 position of a trichothecene such as T-2 toxin, HT-2 toxin, isotrichodermol, diacetoxyscirpenol (“DAS”), 3-deacetylcalonectrin, 3,15-dideacetylcalonectrin, scirpentriol, neosolaniol; 15-acetyldeoxynivalenol, nivalenol, 4-acetylnivalenol (fusarenone-X), 4,15-diacetylnivalenol, 4,7,15-acetylnivalenol, and deoxynivalenol (“DON”) and their various acetylated derivatives. In another particular embodiment, the gene product having trichthecene resistance activity is a 3-O-acetyltransferase from a trichothecene-producing species of Fusarium, such as Fusarium graminearum or Fusarium sporotrichioides.
摘要:
The present invention pertains to transgenic plants comprising nucleic acid molecules comprising nucleotide sequences that encode RAR1 proteins involved in disease resistance, and the RAR1 polypeptides. The invention particularly relates to methods of altering the expressing nucleic acid molecules encoding RAR1 proteins in transgenic plants to alter the level disease resistance, and to transgenic plants, progeny and seed therefrom, having altered enhanced disease resistance. The invention further relates to methods of enhancing expression of R resistance genes, disease resistance signal transduction genes, genes involved in mediating disease resistance or involved in the synthesis of molecules mediating disease resistance. The invention also relates to methods of regulating the expression of other coding sequences of interest by increasing the expression of the nucleic acid molecules of the invention.